
17
Radiation from Apertures

17.1 Field Equivalence Principle

The radiation fields from aperture antennas, such as slots, open-ended waveguides,
horns, reflector and lens antennas, are determined from the knowledge of the fields
over the aperture of the antenna.

The aperture fields become the sources of the radiated fields at large distances. This
is a variation of the Huygens-Fresnel principle, which states that the points on each
wavefront become the sources of secondary spherical waves propagating outwards and
whose superposition generates the next wavefront.

Let Ea,Ha be the tangential fields over an aperture A, as shown in Fig. 17.1.1. These
fields are assumed to be known and are produced by the sources to the left of the screen.
The problem is to determine the radiated fields E(r),H(r) at some far observation point.

The radiated fields can be computed with the help of the field equivalence principle
[1112–1118,1167], which states that the aperture fields may be replaced by equivalent
electric and magnetic surface currents, whose radiated fields can then be calculated using
the techniques of Sec. 14.10. The equivalent surface currents are:

J s = n̂×Ha

Jms = −n̂× Ea

(electric surface current)

(magnetic surface current)
(17.1.1)

where n̂ is a unit vector normal to the surface and on the side of the radiated fields.
Thus, it becomes necessary to consider Maxwell’s equations in the presence of mag-

netic currents and derive the radiation fields from such currents.
The screen in Fig. 17.1.1 is an arbitrary infinite surface over which the tangential

fields are assumed to be zero. This assumption is not necessarily consistent with the
radiated field solutions, that is, Eqs. (17.4.9). A consistent calculation of the fields to
the right of the aperture plane requires knowledge of the fields over the entire aperture
plane (screen plus aperture.)

However, for large apertures (with typical dimension much greater than a wave-
length), the approximation of using the fields Ea,Ha only over the aperture to calculate
the radiation patterns is fairly adequate, especially in predicting the main-lobe behavior
of the patterns.
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Fig. 17.1.1 Radiated fields from an aperture.

The screen can also be a perfectly conducting surface, such as a ground plane, on
which the aperture opening has been cut. In reflector antennas, the aperture itself is
not an opening, but rather a reflecting surface. Fig. 17.1.2 depicts some examples of
screens and apertures: (a) an open-ended waveguide over an infinite ground plane, (b)
an open-ended waveguide radiating into free space, and (c) a reflector antenna.

Fig. 17.1.2 Examples of aperture planes.

There are two alternative forms of the field equivalence principle, which may be used
when only one of the aperture fields Ea or Ha is available. They are:

J s = 0

Jms = −2(n̂× Ea)
(perfect magnetic conductor) (17.1.2)

J s = 2(n̂×Ha)

Jms = 0
(perfect electric conductor) (17.1.3)

They are appropriate when the screen is a perfect electric conductor (PEC) on which
Ea = 0, or when it is a perfect magnetic conductor (PMC) on which Ha = 0.
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Using image theory, the perfect electric (magnetic) conducting screen can be elimi-
nated and replaced by an image magnetic (electric) surface current, doubling its value
over the aperture. The image field causes the total tangential electric (magnetic) field to
vanish over the screen.

If the tangential fields Ea,Ha were known over the entire aperture plane (screen plus
aperture), the three versions of the equivalence principle would generate the same radi-
ated fields. But because we consider Ea,Ha only over the aperture, the three versions
give slightly different results.

In the case of a perfectly conducting screen, the calculated radiation fields (17.4.10)
using the equivalent currents (17.1.2) are consistent with the boundary conditions on
the screen.

17.2 Magnetic Currents and Duality

Next, we consider the solution of Maxwell’s equations driven by the ordinary electric
charge and current densities ρ, J, and in addition, by the magnetic charge and current
densities ρm, Jm.

Although ρm, Jm are fictitious, the solution of this problem will allow us to identify
the equivalent magnetic currents to be used in aperture problems, and thus, establish
the field equivalence principle. The generalized form of Maxwell’s equations is:

∇∇∇×H = J+ jωεE

∇∇∇ · E = 1

ε
ρ

∇∇∇× E = −Jm − jωμH

∇∇∇ ·H = 1

μ
ρm

(17.2.1)

There is now complete symmetry, or duality, between the electric and the magnetic
quantities. In fact, it can be verified easily that the following duality transformation
leaves the set of four equations invariant :

E −→ H
H −→ −E
ε −→ μ
μ −→ ε

J −→ Jm
ρ −→ ρm

Jm −→ −J
ρm −→ −ρ

A −→ Am
ϕ −→ ϕm

Am −→ −A
ϕm −→ −ϕ

(duality) (17.2.2)

where ϕ,A and ϕm,Am are the corresponding scalar and vector potentials introduced
below. These transformations can be recognized as a special case (for α = π/2) of the
following duality rotations, which also leave Maxwell’s equations invariant:[

E ′ ηJ ′ ηρ′

ηH ′ J ′m ρ′m

]
=
[

cosα sinα
− sinα cosα

][
E ηJ ηρ

ηH Jm ρm

]
(17.2.3)

Under the duality transformations (17.2.2), the first two of Eqs. (17.2.1) transform
into the last two, and conversely, the last two transform into the first two.
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A useful consequence of duality is that if one has obtained expressions for the elec-
tric field E, then by applying a duality transformation one can generate expressions for
the magnetic field H. We will see examples of this property shortly.

The solution of Eq. (17.2.1) is obtained in terms of the usual scalar and vector po-
tentials ϕ,A, as well as two new potentials ϕm,Am of the magnetic type:

E = −∇∇∇ϕ− jωA− 1

ε
∇∇∇× Am

H = −∇∇∇ϕm − jωAm + 1

μ
∇∇∇× A

(17.2.4)

The expression for H can be derived from that of E by a duality transformation of
the form (17.2.2). The scalar and vector potentials satisfy the Lorenz conditions and
Helmholtz wave equations:

∇∇∇ · A+ jωεμϕ = 0

∇2ϕ+ k2ϕ = −ρ
ε

∇2A+ k2A = −μ J

and

∇∇∇ · Am + jωεμϕm = 0

∇2ϕm + k2ϕm = −ρmμ
∇2Am + k2Am = −ε Jm

(17.2.5)

The solutions of the Helmholtz equations are given in terms of G(r− r′)= e−jk|r−r′|

4π|r− r′| :

ϕ(r) =
∫
V

1

ε
ρ(r′)G(r− r′)dV′,

A(r) =
∫
V
μ J(r′)G(r− r′)dV′,

ϕm(r) =
∫
V

1

μ
ρm(r′)G(r− r′)dV′

Am(r) =
∫
V
ε Jm(r′)G(r− r′)dV′

(17.2.6)

where V is the volume over which the charge and current densities are nonzero. The
observation point r is taken to be outside this volume. Using the Lorenz conditions, the
scalar potentials may be eliminated in favor of the vector potentials, resulting in the
alternative expressions for Eq. (17.2.4):

E = 1

jωμε
[∇∇∇(∇∇∇ · A)+k2A

]− 1

ε
∇∇∇× Am

H = 1

jωμε
[∇∇∇(∇∇∇ · Am)+k2Am

]+ 1

μ
∇∇∇× A

(17.2.7)

These may also be written in the form of Eq. (14.3.9):

E = 1

jωμε
[∇∇∇× (∇∇∇× A)−μ J]−1

ε
∇∇∇× Am

H = 1

jωμε
[∇∇∇× (∇∇∇× Am)−ε Jm]+ 1

μ
∇∇∇× A

(17.2.8)

662 17. Radiation from Apertures

Replacing A,Am in terms of Eq. (17.2.6), we may express the solutions (17.2.7) di-
rectly in terms of the current densities:

E = 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

H = 1

jωμ

∫
V

[
k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωμ J×∇∇∇′G]dV′

(17.2.9)

Alternatively, if we also use the charge densities, we obtain from (17.2.4):

E =
∫
V

[−jωμ JG+ ρ
ε
∇∇∇′G− Jm ×∇∇∇′G

]
dV′

H =
∫
V

[−jωε JmG+ ρmμ ∇∇∇′G+ J×∇∇∇′G]dV′
(17.2.10)

17.3 Radiation Fields from Magnetic Currents

The radiation fields of the solutions (17.2.7) can be obtained by making the far-field
approximation, which consists of the replacements:

e−jk|r−r′|

4π|r− r′| �
e−jkr

4πr
ejk·r

′
and ∇∇∇ � −jk (17.3.1)

where k = kr̂. Then, the vector potentials of Eq. (17.2.6) take the simplified form:

A(r)= μ e
−jkr

4πr
F(θ,φ) , Am(r)= ε e

−jkr

4πr
Fm(θ,φ) (17.3.2)

where the radiation vectors are the Fourier transforms of the current densities:

F(θ,φ) =
∫
V

J(r′)ejk·r
′
dV′

Fm(θ,φ) =
∫
V

Jm(r′)ejk·r
′
dV′

(radiation vectors) (17.3.3)

Setting J = Jm = 0 in Eq. (17.2.8) because we are evaluating the fields far from the
current sources, and using the approximation ∇∇∇ = −jk = −jkr̂, and the relationship
k/ε =ωη, we find the radiated E and H fields:

E = −jω[r̂× (A× r̂)−η r̂× Am
] = −jk e−jkr

4πr
r̂× [ηF× r̂− Fm

]

H = − jω
η
[
η r̂× (Am × r̂)+r̂× A

] = − jk
η
e−jkr

4πr
r̂× [ηF+ Fm × r̂

] (17.3.4)

These generalize Eq. (14.10.2) to magnetic currents. As in Eq. (14.10.3), we have:

H = 1

η
r̂× E (17.3.5)
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Noting that r̂× (F× r̂)= θ̂θθFθ + φ̂φφFφ and r̂× F = φ̂φφFθ − θ̂θθFφ, and similarly for Fm,
we find for the polar components of Eq. (17.3.4):

E = −jk e
−jkr

4πr
[
θ̂θθ(ηFθ + Fmφ)+φ̂φφ(ηFφ − Fmθ)

]

H = − jk
η
e−jkr

4πr
[−θ̂θθ(ηFφ − Fmθ)+φ̂φφ(ηFθ + Fmφ)]

(17.3.6)

The Poynting vector is given by the generalization of Eq. (15.1.1):

PPP = 1

2
Re(E×H∗)= r̂

k2

32π2ηr2

[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2] = r̂Pr (17.3.7)

and the radiation intensity:

U(θ,φ)= dP
dΩ

= r2Pr = k2

32π2η
[|ηFθ + Fmφ|2 + |ηFφ − Fmθ|2] (17.3.8)

17.4 Radiation Fields from Apertures

For an aperture antenna with effective surface currents given by Eq. (17.1.1), the volume
integrations in Eq. (17.2.9) reduce to surface integrations over the aperture A:

E = 1

jωε

∫
A

[
(J s ·∇∇∇′)∇∇∇′G+ k2J s G− jωε Jms ×∇∇∇′G

]
dS′

H = 1

jωμ

∫
A

[
(Jms ·∇∇∇′)∇∇∇′G+ k2Jms G+ jωμ J s ×∇∇∇′G

]
dS′

(17.4.1)

and, explicitly in terms of the aperture fields shown in Fig. 17.1.1:

E = 1

jωε

∫
A

[
(n̂×Ha)·∇∇∇′(∇∇∇′G)+k2(n̂×Ha)G+ jωε(n̂× Ea)×∇∇∇′G

]
dS′

H = 1

jωμ

∫
A

[−(n̂× Ea)·∇∇∇′(∇∇∇′G)−k2(n̂× Ea)G+ jωμ(n̂×Ha)×∇∇∇′G
]
dS′

(17.4.2)
These are known as Kottler’s formulas [1116–1121,1111,1122–1126]. We derive them

in Sec. 17.12. The equation for H can also be obtained from that of E by the application
of a duality transformation, that is, Ea → Ha, Ha → −Ea and ε→ μ, μ→ ε.

In the far-field limit, the radiation fields are still given by Eq. (17.3.6), but now the
radiation vectors are given by the two-dimensional Fourier transform-like integrals over
the aperture:

F(θ,φ) =
∫
A

J s(r′)ejk·r
′
dS′ =

∫
A

n̂×Ha(r′)ejk·r
′
dS′

Fm(θ,φ) =
∫
A

Jms(r′)ejk·r
′
dS′ = −

∫
A

n̂× Ea(r′)ejk·r
′
dS′

(17.4.3)
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Fig. 17.4.1 Radiation fields from an aperture.

Fig. 17.4.1 shows the polar angle conventions, where we took the origin to be some-
where in the middle of the aperture A.

The aperture surface A and the screen in Fig. 17.1.1 can be arbitrarily curved. How-
ever, a common case is to assume that they are both flat. Then, Eqs. (17.4.3) become
ordinary 2-d Fourier transform integrals. Taking the aperture plane to be the xy-plane
as in Fig. 17.1.1, the aperture normal becomes n̂ = ẑ, and thus, it can be taken out of
the integrands. Setting dS′ = dx′dy′, we rewrite Eq. (17.4.3) in the form:

F(θ,φ) =
∫
A

J s(r′)ejk·r
′
dx′dy′ = ẑ×

∫
A

Ha(r′)ejk·r
′
dx′dy′

Fm(θ,φ) =
∫
A

Jms(r′)ejk·r
′
dx′dy′ = −ẑ×

∫
A

Ea(r′)ejk·r
′
dx′dy′

(17.4.4)

where ejk·r′ = ejkxx′+jkyy′ and kx = k cosφ sinθ, ky = k sinφ sinθ. It proves conve-
nient then to introduce the two-dimensional Fourier transforms of the aperture fields:

f(θ,φ)=
∫
A

Ea(r′)ejk·r
′
dx′dy′ =

∫
A

Ea(x′, y′)ejkxx
′+jkyy′ dx′dy′

g(θ,φ)=
∫
A

Ha(r′)ejk·r
′
dx′dy′ =

∫
A

Ha(x′, y′)ejkxx
′+jkyy′ dx′dy′

(17.4.5)

Then, the radiation vectors become:

F(θ,φ) = ẑ× g(θ,φ)

Fm(θ,φ) = −ẑ× f(θ,φ)
(17.4.6)

Because Ea,Ha are tangential to the aperture plane, they can be resolved into their
cartesian components, for example, Ea = x̂Eax + ŷEay. Then, the quantities f,g can be
resolved in the same way, for example, f = x̂ fx + ŷ fy. Thus, we have:
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F = ẑ× g = ẑ× (x̂gx + ŷgy)= ŷgx − x̂gy

Fm = −ẑ× f = −ẑ× (x̂ fx + ŷ fy)= x̂ fy − ŷ fx
(17.4.7)

The polar components of the radiation vectors are determined as follows:

Fθ = θ̂θθ · F = θ̂θθ · (ŷgx − x̂gy)= gx sinφ cosθ− gy cosφ cosθ

where we read off the dot products (θ̂θθ · x̂) and (θ̂θθ · ŷ) from Eq. (14.8.3). The remaining
polar components are found similarly, and we summarize them below:

Fθ = − cosθ(gy cosφ− gx sinφ)

Fφ = gx cosφ+ gy sinφ

Fmθ = cosθ(fy cosφ− fx sinφ)

Fmφ = −(fx cosφ+ fy sinφ)

(17.4.8)

It follows from Eq. (17.3.6) that the radiated E-field will be:

Eθ = jk e
−jkr

4πr
[
(fx cosφ+ fy sinφ)+η cosθ(gy cosφ− gx sinφ)

]

Eφ = jk e
−jkr

4πr
[
cosθ(fy cosφ− fx sinφ)−η(gx cosφ+ gy sinφ)

] (17.4.9)

The radiation fields resulting from the alternative forms of the field equivalence
principle, Eqs. (17.1.2) and (17.1.3), are obtained from Eq. (17.4.9) by removing the g- or
the f -terms and doubling the remaining term. We have for the PEC case:

Eθ = 2jk
e−jkr

4πr
[
fx cosφ+ fy sinφ

]

Eφ = 2jk
e−jkr

4πr
[
cosθ(fy cosφ− fx sinφ)

] (17.4.10)

and for the PMC case:

Eθ = 2jk
e−jkr

4πr
[
η cosθ(gy cosφ− gx sinφ)

]

Eφ = 2jk
e−jkr

4πr
[−η(gx cosφ+ gy sinφ)

] (17.4.11)

In all three cases, the radiated magnetic fields are obtained from:

Hθ = − 1

η
Eφ , Hφ = 1

η
Eθ (17.4.12)
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We note that Eq. (17.4.9) is the average of Eqs. (17.4.10) and (17.4.11). Also, Eq. (17.4.11)
is the dual of Eq. (17.4.10). Indeed, using Eq. (17.4.12), we obtain the following H-
components for Eq. (17.4.11), which can be derived from Eq. (17.4.10) by the duality
transformation Ea → Ha or f → g :

Hθ = 2jk
e−jkr

4πr
[
gx cosφ+ gy sinφ

]

Hφ = 2jk
e−jkr

4πr
[
cosθ(gy cosφ− gx sinφ)

] (17.4.13)

At θ = 90o, the components Eφ, Hφ become tangential to the aperture screen. We
note that because of the cosθ factors, Eφ (resp. Hφ) will vanish in the PEC (resp. PMC)
case, in accordance with the boundary conditions.

17.5 Huygens Source

The aperture fields Ea,Ha are referred to as Huygens source if at all points on the
aperture they are related by the uniform plane-wave relationship:

Ha = 1

η
n̂× Ea (Huygens source) (17.5.1)

where η is the characteristic impedance of vacuum.
For example, this is the case if a uniform plane wave is incident normally on the

aperture plane from the left, as shown in Fig. 17.5.1. The aperture fields are assumed to
be equal to the incident fields, Ea = Einc and Ha = Hinc, and the incident fields satisfy
Hinc = ẑ× Einc/η.

Fig. 17.5.1 Uniform plane wave incident on an aperture.

The Huygens source condition is not always satisfied. For example, if the uniform
plane wave is incident obliquely on the aperture, then η must be replaced by the trans-
verse impedance ηT, which depends on the angle of incidence and the polarization of
the incident wave as discussed in Sec. 7.2.
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Similarly, if the aperture is the open end of a waveguide, then ηmust be replaced by
the waveguide’s transverse impedance, such as ηTE or ηTM, depending on the assumed
waveguide mode. On the other hand, if the waveguide ends are flared out into a horn
with a large aperture, then Eq. (17.5.1) is approximately valid.

The Huygens source condition implies the same relationship for the Fourier trans-
forms of the aperture fields, that is, (with n̂ = ẑ)

g = 1

η
n̂× f ⇒ gx = − 1

η
fy , gy = 1

η
fx (17.5.2)

Inserting these into Eq. (17.4.9) we may express the radiated electric field in terms
of f only. We find:

Eθ = jk e
−jkr

2πr
1+ cosθ

2

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
1+ cosθ

2

[
fy cosφ− fx sinφ

] (17.5.3)

The factor (1+cosθ)/2 is known as an obliquity factor. The PEC case of Eq. (17.4.10)
remains unchanged for a Huygens source, but the PMC case becomes:

Eθ = jk e
−jkr

2πr
cosθ

[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
[
fy cosφ− fx sinφ

] (17.5.4)

We may summarize all three cases by the single formula:

Eθ = jk e
−jkr

2πr
cθ
[
fx cosφ+ fy sinφ

]

Eφ = jk e
−jkr

2πr
cφ
[
fy cosφ− fx sinφ

] (fields from Huygens source) (17.5.5)

where the obliquity factors are defined in the three cases:[
cθ
cφ

]
= 1

2

[
1+ cosθ
1+ cosθ

]
,
[

1
cosθ

]
,
[

cosθ
1

]
(obliquity factors) (17.5.6)

We note that the first is the average of the last two. The obliquity factors are equal to
unity in the forward direction θ = 0o and vary little for near-forward angles. Therefore,
the radiation patterns predicted by the three methods are very similar in their mainlobe
behavior.

In the case of a modified Huygens source that replaces η by ηT, Eqs. (17.5.5) retain
their form. The aperture fields and their Fourier transforms are now assumed to be
related by:

Ha = 1

ηT
ẑ× Ea ⇒ g = 1

ηT
ẑ× f (17.5.7)

Inserting these into Eq. (17.4.9), we obtain the modified obliquity factors :

cθ = 1

2
[1+K cosθ] , cφ = 1

2
[K + cosθ] , K = η

ηT
(17.5.8)
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17.6 Directivity and Effective Area of Apertures

For any aperture, given the radiation fields Eθ, Eφ of Eqs. (17.4.9)–(17.4.11), the corre-
sponding radiation intensity is:

U(θ,φ)= dP
dΩ

= r2Pr = r2 1

2η
[|Eθ|2 + |Eφ|2] = r2 1

2η
|E(θ,φ)|2 (17.6.1)

Because the aperture radiates only into the right half-space 0 ≤ θ ≤ π/2, the total
radiated power and the effective isotropic radiation intensity will be:

Prad =
∫ π/2

0

∫ 2π

0
U(θ,φ)dΩ , UI = Prad

4π
(17.6.2)

The directive gain is computed by D(θ,φ)= U(θ,φ)/UI, and the normalized gain
by g(θ,φ)= U(θ,φ)/Umax. For a typical aperture, the maximum intensity Umax is
towards the forward direction θ = 0o. In the case of a Huygens source, we have:

U(θ,φ)= k2

8π2η
[
c2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2] (17.6.3)

Assuming that the maximum is towards θ = 0o, then cθ = cφ = 1, and we find for
the maximum intensity:

Umax = k2

8π2η
[|fx cosφ+ fy sinφ|2 + |fy cosφ− fx sinφ|2]θ=0

= k2

8π2η
[|fx|2 + |fy|2]θ=0 =

k2

8π2η
|f |2max

where |f|2max =
[|fx|2 + |fy|2]θ=0. Setting k = 2π/λ, we have:

Umax = 1

2λ2η
|f |2max (17.6.4)

It follows that the normalized gain will be:

g(θ,φ)= c2
θ|fx cosφ+ fy sinφ|2 + c2

φ|fy cosφ− fx sinφ|2
|f |2max

(17.6.5)

In the case of Eq. (17.4.9) with cθ = cφ = (1+ cosθ)/2, this simplifies further into:

g(θ,φ)= c2
θ
|fx|2 + |fy|2
|f |2max

=
(

1+ cosθ
2

)2 |f(θ,φ)|2
|f |2max

(17.6.6)

The square root of the gain is the (normalized) field strength:

|E(θ,φ)|
|E |max

=
√
g(θ,φ) =

(
1+ cosθ

2

) |f(θ,φ)|
|f |max

(17.6.7)

The power computed by Eq. (17.6.2) is the total power that is radiated outwards from
a half-sphere of large radius r. An alternative way to compute Prad is to invoke energy
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conservation and compute the total power that flows into the right half-space through
the aperture. Assuming a Huygens source, we have:

Prad =
∫
A
Pz dS′ = 1

2

∫
A

ẑ · Re
[
Ea ×H∗a

]
dS′ = 1

2η

∫
A
|Ea(r′)|2dS′ (17.6.8)

Because θ = 0 corresponds to kx = ky = 0, it follows from the Fourier transform
definition (17.4.5) that:

|f|2max =
∣∣∣∣
∫
A

Ea(r′)ejk·r
′
dS′

∣∣∣∣2

kx=ky=0
=
∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

Therefore, the maximum intensity is given by:

Umax = 1

2λ2η
|f |2max =

1

2λ2η

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

(17.6.9)

Dividing (17.6.9) by (17.6.8), we find the directivity:

Dmax = 4π
Umax

Prad
= 4π
λ2

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∫
A
|Ea(r′)|2dS′

= 4πAeff

λ2
(directivity) (17.6.10)

It follows that the maximum effective area of the aperture is:

Aeff =

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∫
A
|Ea(r′)|2dS′

≤ A (effective area) (17.6.11)

and the aperture efficiency :

ea = Aeff

A
=

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

A
∫
A
|Ea(r′)|2dS′

≤ 1 (aperture efficiency) (17.6.12)

The inequalities in Eqs. (17.6.11) and (17.6.12) can be thought of as special cases of
the Cauchy-Schwarz inequality. It follows that equality is reached whenever Ea(r′) is
uniform over the aperture, that is, independent of r′.

Thus, uniform apertures achieve the highest directivity and have effective areas equal
to their geometrical areas.

Because the integrand in the numerator of ea depends both on the magnitude and the
phase of Ea, it proves convenient to separate out these effects by defining the aperture
taper efficiency or loss, eatl, and the phase error efficiency or loss, epel, as follows:

eatl =

∣∣∣∣
∫
A
|Ea(r′)|dS′

∣∣∣∣2

A
∫
A
|Ea(r′)|2dS′

, epel =

∣∣∣∣
∫
A

Ea(r′)dS′
∣∣∣∣2

∣∣∣∣
∫
A
|Ea(r′)|dS′

∣∣∣∣2 (17.6.13)

so that ea becomes the product:

ea = eatl epel (17.6.14)
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17.7 Uniform Apertures

In uniform apertures, the fields Ea,Ha are assumed to be constant over the aperture
area. Fig. 17.7.1 shows the examples of a rectangular and a circular aperture. For con-
venience, we will assume a Huygens source.

Fig. 17.7.1 Uniform rectangular and circular apertures.

The field Ea can have an arbitrary direction, with constant x- and y-components,
Ea = x̂E0x + ŷE0y. Because Ea is constant, its Fourier transform f(θ,φ) becomes:

f(θ,φ)=
∫
A

Ea(r′)ejk·r
′
dS′ = Ea

∫
A
ejk·r

′
dS′ ≡ Af(θ,φ)Ea (17.7.1)

where we introduced the normalized scalar quantity:

f(θ,φ)= 1

A

∫
A
ejk·r

′
dS′ (uniform-aperture pattern) (17.7.2)

The quantity f(θ,φ) depends on the assumed geometry of the aperture and it, alone,
determines the radiation pattern. Noting that the quantity |Ea| cancels out from the
ratio in the gain (17.6.7) and that f(0,φ)= (1/A)∫A dS′ = 1, we find for the normalized
gain and field strengths:

|E(θ,φ)|
|E |max

=
√
g(θ,φ) =

(
1+ cosθ

2

)
|f(θ,φ)| (17.7.3)

17.8 Rectangular Apertures

For a rectangular aperture of sides a,b, the area integral (17.7.2) is separable in the x-
and y-directions:

f(θ,φ)= 1

ab

∫ a/2
−a/2

∫ b/2
−b/2

ejkxx
′+jkyy′ dx′dy′ = 1

a

∫ a/2
−a/2

ejkxx
′
dx′ · 1

b

∫ b/2
−b/2

ejkyy
′
dy′

where we placed the origin of the r′ integration in the middle of the aperture. The above
integrals result in the sinc-function patterns:
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f(θ,φ)= sin(kxa/2)
kxa/2

sin(kyb/2)
kyb/2

= sin(πvx)
πvx

sin(πvy)
πvy

(17.8.1)

where we defined the quantities vx, vy :

vx = 1

2π
kxa = 1

2π
ka sinθ cosφ = a

λ
sinθ cosφ

vy = 1

2π
kyb = 1

2π
kb sinθ sinφ = b

λ
sinθ sinφ

(17.8.2)

The pattern simplifies along the two principal planes, the xz- and yz-planes, corre-
sponding to φ = 0o and φ = 90o. We have:

f(θ,0o) = sin(πvx)
πvx

= sin
(
(πa/λ)sinθ

)
(πa/λ)sinθ

f(θ,90o) = sin(πvy)
πvy

= sin
(
(πb/λ)sinθ

)
(πb/λ)sinθ

(17.8.3)

Fig. 17.8.1 shows the three-dimensional pattern of Eq. (17.7.3) as a function of the
independent variables vx, vy, for aperture dimensions a = 8λ and b = 4λ. The x, y
separability of the pattern is evident. The essential MATLAB code for generating this
figure was (note MATLAB’s definition of sinc(x)= sin(πx)/(πx)):

−8
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0
4

8

−8
−4

0
4

8
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1

xv yv 

htg
nerts dleif 

Fig. 17.8.1 Radiation pattern of rectangular aperture (a = 8λ, b = 4λ).

a = 8; b = 4;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);
vy = b*sin(theta).*sin(phi);

E = abs((1 + cos(theta))/2 .* sinc(vx) .* sinc(vy));
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surfl(vx,vy,E);
shading interp; colormap(gray(16));

As the polar angles vary over 0 ≤ θ ≤ 90o and 0 ≤ φ ≤ 360o, the quantities vx and
vy vary over the limits −a/λ ≤ vx ≤ a/λ and −b/λ ≤ vy ≤ b/λ. In fact, the physically
realizable values of vx, vy are those that lie in the ellipse in the vxvy-plane:

v2
x
a2
+ v

2
y

b2
≤ 1

λ2
(visible region) (17.8.4)

The realizable values of vx, vy are referred to as the visible region. The graph in
Fig. 17.8.1 restricts the values of vx, vy within that region.

The radiation pattern consists of a narrow mainlobe directed towards the forward
direction θ = 0o and several sidelobes.

We note the three characteristic properties of the sinc-function patterns: (a) the 3-
dB width in v-space is Δvx = 0.886 (the 3-dB wavenumber is vx = 0.443); (b) the first
sidelobe is down by about 13.26 dB from the mainlobe and occurs at vx = 1.4303; and
(c) the first null occurs at vx = 1. See Sec. 19.7 for the proof of these results.

The 3-dB width in angle space can be obtained by linearizing the relationship vx =
(a/λ)sinθ about θ = 0o, that is, Δvx = (a/λ)Δθ cosθ

∣∣
θ=0 = aΔθ/λ. Thus, Δθ =

λΔvx/a. This ignores also the effect of the obliquity factor. It follows that the 3-dB
widths in the two principal planes are (in radians and in degrees):

Δθx = 0.886
λ
a
= 50.76o λ

a
, Δθy = 0.886

λ
b
= 50.76o λ

b
(17.8.5)

The 3-dB angles are θx = Δθx/2 = 25.4o λ/a and θy = Δθy/2 = 25.4o λ/b.
Fig. 17.8.2 shows the two principal radiation patterns of Eq. (17.7.3) as functions of
θ, for the case a = 8λ, b = 4λ. The obliquity factor was included, but it makes essen-
tially no difference near the mainlobe and first sidelobe region, ultimately suppressing
the response at θ = 90o by a factor of 0.5.

The 3-dB widths are shown on the graphs. The first sidelobes occur at the angles
θa = asin(1.4303λ/a)= 10.30o and θb = asin(1.4303λ/b)= 20.95o.

For aperture antennas, the gain is approximately equal to the directivity because the
losses tend to be very small. The gain of the uniform rectangular aperture is, therefore,
G � D = 4π(ab)/λ2. Multiplying G by Eqs. (17.8.5), we obtain the gain-beamwidth
product p = GΔθx Δθy = 4π(0.886)2= 9.8646 rad2 = 32 383 deg2. Thus, we have an
example of the general formula (15.3.14) (with the angles in radians and in degrees):

G = 9.8646

Δθx Δθy
= 32 383

Δθo
x Δθo

y
(17.8.6)

17.9 Circular Apertures

For a circular aperture of radius a, the pattern integral (17.7.2) can be done conveniently
using cylindrical coordinates. The cylindrical symmetry implies that f(θ,φ) will be
independent of φ.
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Fig. 17.8.2 Radiation patterns along the two principal planes (a = 8λ, b = 4λ).

Therefore, for the purpose of computing the integral (17.7.2), we may setφ = 0. We
have then k · r′ = kxx′ = kρ′ sinθ cosφ′. Writing dS′ = ρ′dρ′dφ′, we have:

f(θ)= 1

πa2

∫ a
0

∫ 2π

0
ejkρ

′ sinθ cosφ′ρ′ dρ′dφ′ (17.9.1)

Theφ′- and ρ′-integrations can be done using the following integral representations
for the Bessel functions J0(x) and J1(x) [1267]:

J0(x)= 1

2π

∫ 2π

0
ejx cosφ′ dφ′ and

∫ 1

0
J0(xr)r dr = J1(x)

x
(17.9.2)

Then Eq. (17.9.1) gives:

f(θ)= 2
J1(ka sinθ)
ka sinθ

= 2
J1(2πu)

2πu
, u = 1

2π
ka sinθ = a

λ
sinθ (17.9.3)

This is the well-known Airy pattern [598] for a circular aperture. The function f(θ)
is normalized to unity at θ = 0o, because J1(x) behaves like J1(x)� x/2 for small x.

Fig. 17.9.1 shows the three-dimensional field pattern (17.7.3) as a function of the in-
dependent variables vx = (a/λ)sinθ cosφ and vy = (a/λ)sinθ sinφ, for an aperture
radius of a = 3λ. The obliquity factor was not included as it makes little difference
near the main lobe. The MATLAB code for this graph was implemented with the built-in
function besselj:

a = 3;
[theta,phi] = meshgrid(0:1:90, 0:9:360);
theta = theta*pi/180; phi = phi*pi/180;

vx = a*sin(theta).*cos(phi);
vy = a*sin(theta).*sin(phi);
u = a*sin(theta);

E = ones(size(u));
i = find(u);
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Fig. 17.9.1 Radiation pattern of circular aperture (a = 3λ).

E(i) = abs(2*besselj(1,2*pi*u(i))./(2*pi*u(i)));

surfl(vx,vy,E);
shading interp; colormap(gray(16));

The visible region is the circle on the vxvy-plane:

v2
x + v2

y ≤
a2

λ2
(17.9.4)

The mainlobe/sidelobe characteristics of f(θ) are as follows. The 3-dB wavenumber
is u = 0.2572 and the 3-dB width in u-space is Δu = 2×0.2572 = 0.5144. The first null
occurs at u = 0.6098 so that the first-null width is Δu = 2×0.6098 = 1.22. The first
sidelobe occurs at u = 0.8174 and its height is |f(u)| = 0.1323 or 17.56 dB below the
mainlobe. The beamwidths in angle space can be obtained from Δu = a(Δθ)/λ, which
gives for the 3-dB and first-null widths in radians and degrees:

Δθ3dB = 0.5144
λ
a
= 29.47o λ

a
, Δθnull = 1.22

λ
a
= 70o λ

a
(17.9.5)

The 3-dB angle is θ3dB = Δθ3dB/2 = 0.2572λ/a = 14.74o λ/a and the first-null
angle θnull = 0.6098λ/a. Fig. 17.9.2 shows the radiation pattern of Eq. (17.7.3) as a
function of θ, for the case a = 3λ. The obliquity factor was included.

The graph shows the 3-dB width and the first sidelobe, which occurs at the angleθa =
asin(0.817λ/a)= 15.8o. The first null occurs at θnull = asin(0.6098λ/a)= 11.73o,
whereas the approximation θnull = 0.6098λ/a gives 11.65o.

The gain-beamwidth product is p = G(Δθ3dB)2= [
4π(πa2)/λ2

]
(0.514λ/a)2=

4π2(0.5144)2= 10.4463 rad2 = 34 293 deg2. Thus, in radians and degrees:

G = 10.4463

(Δθ3dB)2
= 34 293

(Δθo
3dB)2

(17.9.6)
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Fig. 17.9.2 Radiation pattern of circular aperture (a = 3λ).

The first-null angle θnull = 0.6098λ/a is the so-called Rayleigh diffraction limit for
the nominal angular resolution of optical instruments, such as microscopes and tele-
scopes. It is usually stated in terms of the diameter D = 2a of the optical aperture:

Δθ = 1.22
λ
D
= 70o λ

D
(Rayleigh limit) (17.9.7)

17.10 Vector Diffraction Theory

In this section, we provide a justification of the field equivalence principle (17.1.1) and
Kottler’s formulas (17.4.2) from the point of view of vector diffraction theory. We also
discuss the Stratton-Chu and Franz formulas. A historical overview of this subject is
given in [1125,1126].

In Sec. 17.2, we worked with the vector potentials and derived the fields due to
electric and magnetic currents radiating in an unbounded region. Here, we consider the
problem of finding the fields in a volumeV bounded by a closed surface S and an infinite
spherical surface S∞, as shown in Fig. 17.10.1.

The solution of this problem requires that we know the current sources within V
and the electric and magnetic fields tangential to the surface S. The fields E1,H1 and
current sources inside the volume V1 enclosed by S have an effect on the outside only
through the tangential fields on the surface.

We start with Maxwell’s equations (17.2.1), which include both electric and magnetic
currents. This will help us identify the effective surface currents and derive the field
equivalence principle.

Taking the curls of both sides of Ampère’s and Faraday’s laws and using the vector
identity∇∇∇×(∇∇∇×E)=∇∇∇(∇∇∇·E)−∇2E, we obtain the following inhomogeneous Helmholtz
equations (which are duals of each other):
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Fig. 17.10.1 Fields outside a closed surface S.

∇2E+ k2E = jωμ J+ 1

ε
∇∇∇ρ+∇∇∇× Jm

∇2H+ k2H = jωε Jm + 1

μ
∇∇∇ρm −∇∇∇× J

(17.10.1)

We recall that the Green’s function for the Helmholtz equation is:

∇′2G+ k2G = −δ(3)(r− r′) , G(r− r′)= e−jk|r−r′|

4π|r− r′| (17.10.2)

where ∇∇∇′ is the gradient with respect to r′. Applying Green’s second identity given by
Eq. (C.27) of Appendix C, we obtain:∫

V

[
G∇′2E− E∇′2G]dV′ = −

∮
S+S∞

[
G
∂E

∂n′
− E

∂G
∂n′

]
dS′ ,

∂
∂n′

= n̂ ·∇∇∇′

where G and E stand for G(r− r′) and E(r′) and the integration is over r′. The quantity
∂/∂n′ is the directional derivative along n̂. The negative sign in the right-hand side
arises from using a unit vector n̂ that is pointing into the volume V.

The integral over the infinite surface is taken to be zero. This may be justified more
rigorously [1118] by assuming that E and H behave like radiation fields with asymptotic
form E → const.e−jkr/r and H → r̂ × E/η.† Thus, dropping the S∞ term, and adding
and subtracting k2GE in the left-hand side, we obtain:∫

V

[
G(∇′2E+ k2E)−E (∇′2G+ k2G)

]
dV′ = −

∮
S

[
G
∂E

∂n′
− E

∂G
∂n′

]
dS′ (17.10.3)

Using Eq. (17.10.2), the second term on the left may be integrated to give E(r):

−
∫
V

E(r′) (∇′2G+ k2G)dV′ =
∫
V

E(r′)δ(3)(r− r′)dV′ = E(r)

where we assumed that r lies in V. This integral is zero if r lies in V1 because then r′

can never be equal to r. For arbitrary r, we may write:

†The precise conditions are: r|E| → const. and r|E− ηH× r̂| → 0 as r →∞.
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∫
V

E(r′)δ(3)(r− r′)dV′ = uV(r)E(r)=
⎧⎨
⎩E(r), if r ∈ V

0, if r �∈ V (17.10.4)

where uV(r) is the characteristic function of the volume region V:†

uV(r)=
⎧⎨
⎩1, if r ∈ V

0, if r �∈ V (17.10.5)

We may now solve Eq. (17.10.3) for E(r). In a similar fashion, or, performing a duality
transformation on the expression for E(r), we also obtain the corresponding magnetic
field H(r). Using (17.10.1), we have:

E(r) =
∫
V

[
−jωμG J− 1

ε
G∇∇∇′ρ−G∇∇∇′ × Jm

]
dV′ +

∮
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′

H(r) =
∫
V

[
−jωεG Jm − 1

μ
G∇∇∇′ρm +G∇∇∇′ × J

]
dV′ +

∮
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′

(17.10.6)
Because of the presence of the particular surface term, we will refer to these as

the Kirchhoff diffraction formulas. Eqs. (17.10.6) can be transformed into the so-called
Stratton-Chu formulas [1116–1121,1111,1122–1126]:‡

E(r)=
∫
V

[
−jωμG J+ ρ

ε
∇∇∇′G− Jm ×∇∇∇′G

]
dV′

+
∮
S

[−jωμG(n̂×H)+(n̂ · E)∇∇∇′G+ (n̂× E)×∇∇∇′G]dS′

H(r)=
∫
V

[
−jωεG Jm + ρmμ ∇∇∇′G+ J×∇∇∇′G

]
dV′

+
∮
S

[
jωεG(n̂× E)+(n̂ ·H)∇∇∇′G+ (n̂×H)×∇∇∇′G]dS′

(17.10.7)

The proof of the equivalence of (17.10.6) and (17.10.7) is rather involved. Problem
17.4 breaks down the proof into its essential steps.

Term by term comparison of the volume and surface integrals in (17.10.7) yields the
effective surface currents of the field equivalence principle:∗

J s = n̂×H , Jms = −n̂× E (17.10.8)

Similarly, the effective surface charge densities are:

ρs = ε n̂ · E , ρms = μ n̂ ·H (17.10.9)

†Technically [1124], one must set uV(r)= 1/2, if r lies on the boundary of V, that is, on S.
‡See [1113,1119,1125,1126] for earlier work by Larmor, Tedone, Ignatowski, and others.
∗Initially derived by Larmor and Love [1125,1126], and later developed fully by Schelkunoff [1112,1114].
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Eqs. (17.10.7) may be transformed into the Kottler formulas [1116–1121,1111,1122–
1126], which eliminate the charge densities ρ,ρm in favor of the currents J, Jm :

E(r)= 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

+ 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

H(r)= 1

jωμ

∫
V

[
k2JmG+ (Jm ·∇∇∇′)∇∇∇′G+ jωμ J×∇∇∇′G

]
dV′

+ 1

jωμ

∮
S

[−k2G(n̂× E)−((n̂× E)·∇∇∇′)∇∇∇′G+ jωμ(n̂×H)×∇∇∇′G]dS′
(17.10.10)

The steps of the proof are outlined in Problem 17.5.
A related problem is to consider a volume V bounded by the surface S, as shown in

Fig. 17.10.2. The fields inside V are still given by (17.10.7), with n̂ pointing again into
the volume V. If the surface S recedes to infinity, then (17.10.10) reduce to (17.2.9).

Fig. 17.10.2 Fields inside a closed surface S.

Finally, the Kottler formulas may be transformed into the Franz formulas [1121,1111,1122–
1124], which are essentially equivalent to Eq. (17.2.8) amended by the vector potentials
due to the equivalent surface currents:

E(r) = 1

jωμε
[∇∇∇× (∇∇∇× (A+ A s)

)− μ J
]− 1

ε
∇∇∇× (Am + Ams)

H(r) = 1

jωμε
[∇∇∇× (∇∇∇× (Am + Ams)

)− ε Jm
]+ 1

μ
∇∇∇× (A+ A s)

(17.10.11)

where A and Am were defined in Eq. (17.2.6). The new potentials are defined by:

A s(r) =
∮
S
μ J s(r′)G(r− r′)dS′ =

∮
S
μ
[
n̂×H(r′)

]
G(r− r′)dS′

Ams(r) =
∮
S
ε Jms(r′)G(r− r′)dS′ = −

∮
S
ε
[
n̂× E(r′)

]
G(r− r′)dS′

(17.10.12)

Next, we specialize the above formulas to the case where the volume V contains
no current sources (J = Jm = 0), so that the E,H fields are given only in terms of the
surface integral terms.
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This happens if we choose S in Fig. 17.10.1 such that all the current sources are
inside it, or, if in Fig. 17.10.2 we choose S such that all the current sources are outside
it, then, the Kirchhoff, Stratton-Chu, Kottler, and Franz formulas simplify into:

E(r) =
∮
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′

=
∮
S

[−jωμG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′

= 1

jωε

∮
S

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

= 1

jωε
∇∇∇× (∇∇∇×

∮
S
G(n̂×H )dS′

)+∇∇∇×
∮
S
G(n̂× E )dS′

(17.10.13)

H(r) =
∮
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′

=
∮
S

[
jωεG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′

= 1

jωμ

∮
S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωμ(n̂×H )×∇∇∇′G]dS′

= − 1

jωμ
∇∇∇× (∇∇∇×

∮
S
G(n̂× E )dS′

)+∇∇∇×
∮
S
G(n̂×H )dS′

(17.10.14)
where the last equations are the Franz formulas with A = Am = 0.

Fig. 17.10.3 illustrates the geometry of the two cases. Eqs. (17.10.13) and (17.10.14)
represent the vectorial formulation of the Huygens-Fresnel principle, according to which
the tangential fields on the surface can be considered to be the sources of the fields away
from the surface.

Fig. 17.10.3 Current sources are outside the field region.

17.11 Extinction Theorem

In all of the equivalent formulas for E(r),H(r), we assumed that r lies within the volume
V. The origin of the left-hand sides in these formulas can be traced to Eq. (17.10.4), and
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therefore, if r is not in V but is within the complementary volume V1, then the left-hand
sides of all the formulas are zero. This does not mean that the fields inside V1 are
zero—it only means that the sum of the terms on the right-hand sides are zero.

To clarify these remarks, we consider an imaginary closed surface S dividing all
space in two volumes V1 and V, as shown in Fig. 17.11.1. We assume that there are
current sources in both regions V and V1. The surface S1 is the same as S but its unit
vector n̂1 points intoV1, so that n̂1 = −n̂. Applying (17.10.10) to the volumeV, we have:

Fig. 17.11.1 Current sources may exist in both V and V1.

1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

+ 1

jωε

∫
V

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =

⎧⎨
⎩E(r), if r ∈ V

0, if r ∈ V1

The vanishing of the right-hand side when r is in V1 is referred to as an extinction
theorem.† Applying (17.10.10) to V1, and denoting by E1,H1 the fields in V1, we have:

1

jωε

∮
S1

[
k2G(n̂1 ×H1)+

(
(n̂1 ×H1)·∇∇∇′

)∇∇∇′G+ jωε(n̂1 × E1)×∇∇∇′G
]
dS′

+ 1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =

⎧⎨
⎩0, if r ∈ V

E1(r), if r ∈ V1

Because n̂1 = −n̂, and on the surface E1 = E and H1 = H, we may rewrite:

− 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

+ 1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′ =

⎧⎨
⎩0, if r ∈ V

E1(r), if r ∈ V1

Adding up the two cases and combining the volume integrals into a single one, we obtain:

1

jωε

∫
V+V1

[
(J ·∇∇∇′)∇∇∇′G+ k2GJ− jωε Jm ×∇∇∇′G

]
dV′ =

⎧⎨
⎩E(r), if r ∈ V

E1(r), if r ∈ V1

This is equivalent to Eq. (17.2.9) in which the currents are radiating into unbounded
space. We can also see how the sources within V1 make themselves felt on the outside
only through the tangential fields at the surface S, that is, for r ∈ V :

†In fact, it can be used to prove the Ewald-Oseen extinction theorem that we considered in Sec. 14.6.
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1

jωε

∫
V1

[
k2JG+ (J ·∇∇∇′)∇∇∇′G− jωε Jm ×∇∇∇′G

]
dV′

= 1

jωε

∮
S

[
k2G(n̂×H)+((n̂×H)·∇∇∇′)∇∇∇′G+ jωε(n̂× E)×∇∇∇′G]dS′

17.12 Vector Diffraction for Apertures

The Kirchhoff diffraction integral, Stratton-Chu, Kottler, and Franz formulas are equiv-
alent only for a closed surface S.

If the surface is open, as in the case of an aperture, the four expressions in (17.10.13)
and in (17.10.14) are no longer equivalent. In this case, the Kottler and Franz formulas
remain equal to each other and give the correct expressions for the fields, in the sense
that the resulting E(r) and H(r) satisfy Maxwell’s equations [1113,1111,1125,1126].

For an open surface S bounded by a contour C, shown in Fig. 17.12.1, the Kottler
and Franz formulas are related to the Stratton-Chu and the Kirchhoff diffraction integral
formulas by the addition of some line-integral correction terms [1119]:

E(r)= 1

jωε

∫
S

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

= 1

jωε
∇∇∇× (∇∇∇×

∫
S
G(n̂×H )dS′

)+∇∇∇×
∫
S
G(n̂× E )dS′

=
∫
S

[−jωμG(n̂×H )+(n̂ · E )∇∇∇′G+ (n̂× E )×∇∇∇′G]dS′ − 1

jωε

∮
C
(∇∇∇′G)H · dl

=
∫
S

[
E
∂G
∂n′

−G ∂E

∂n′

]
dS′ −

∮
C
GE× dl− 1

jωε

∮
C
(∇∇∇′G)H · dl

(17.12.1)

H(r)= 1

jωμ

∫
S

[−k2G(n̂× E )−((n̂× E )·∇∇∇′)∇∇∇′G+ jωμ(n̂×H )×∇∇∇′G]dS′

= − 1

jωμ
∇∇∇× (∇∇∇×

∫
S
G(n̂× E )dS′

)+∇∇∇×
∫
S
G(n̂×H )dS′

=
∫
S

[
jωεG(n̂× E )+(n̂ ·H )∇∇∇′G+ (n̂×H )×∇∇∇′G]dS′ + 1

jωμ

∮
C
(∇∇∇′G)E · dl

= −
∫
S

[
H
∂G
∂n′

−G ∂H

∂n′

]
dS′ −

∮
C
GH× dl+ 1

jωμ

∮
C
(∇∇∇′G)E · dl

(17.12.2)
The proof of the equivalence of these expressions is outlined in Problems 17.7 and

17.8. The Kottler-Franz formulas (17.12.1) and (17.12.2) are valid for points off the
aperture surface S. The formulas are not consistent for points on the aperture. However,
they have been used very successfully in practice to predict the radiation patterns of
aperture antennas.

The line-integral correction terms have a minor effect on the mainlobe and near
sidelobes of the radiation pattern. Therefore, they can be ignored and the diffracted

682 17. Radiation from Apertures

Fig. 17.12.1 Aperture surface S bounded by contour C.

field can be calculated by any of the four alternative formulas, Kottler, Franz, Stratton-
Chu, or Kirchhoff integral—all applied to the open surface S.

17.13 Fresnel Diffraction

In Sec. 17.4, we looked at the radiation fields arising from the Kottler-Franz formulas,
where we applied the Fraunhofer approximation in which only linear phase variations
over the aperture were kept in the propagation phase factor e−jkR. Here, we consider
the intermediate case of Fresnel approximation in which both linear and quadratic phase
variations are retained.

We discuss the classical problem of diffraction of a spherical wave by a rectangular
aperture, a slit, and a straight-edge using the Kirchhoff integral formula. The case of a
plane wave incident on a conducting edge is discussed in Problem 17.11 using the field-
equivalence principle and Kottler’s formula and more accurately, in Sec. 17.15, using
Sommerfeld’s exact solution of the geometrical theory of diffraction. These examples
are meant to be an introduction to the vast subject of diffraction.

In Fig. 17.13.1, we consider a rectangular aperture illuminated from the left by a point
source radiating a spherical wave. We take the origin to be somewhere on the aperture
plane, but eventually we will take it to be the point of intersection of the aperture plane
and the line between the source and observation points P1 and P2.

The diffracted field at point P2 may be calculated from the Kirchhoff formula applied
to any of the cartesian components of the field:

E =
∫
S

[
E1
∂G
∂n′

−G ∂E1

∂n′

]
dS′ (17.13.1)

where E1 is the spherical wave from the source point P1 evaluated at the aperture point
P′, and G is the Green’s function from P′ to P2:

E1 = A1
e−jkR1

R1
, G = e−jkR2

4πR2
(17.13.2)

whereA1 is a constant. If r1 and r2 are the vectors pointing from the origin to the source
and observation points, then we have for the distance vectors R1 and R2:
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Fig. 17.13.1 Fresnel diffraction through rectangular aperture.

R1 = r1 − r′ , R1 = |r1 − r′| =
√
r2

1 − 2r1 · r′ + r′ · r′

R2 = r2 − r′ , R2 = |r2 − r′| =
√
r2

2 − 2r2 · r′ + r′ · r′
(17.13.3)

Therefore, the gradient operator∇∇∇′ can be written as follows when it acts on a function
of R1 = |r1 − r′| or a function of R2 = |r2 − r′|:

∇∇∇′ = −R̂1
∂
∂R1

, ∇∇∇′ = −R̂2
∂
∂R2

where R̂1 and R̂2 are the unit vectors in the directions of R1 and R2. Thus, we have:

∂E1

∂n′
= n̂ ·∇∇∇′E1 = −n̂ · R̂1

∂E1

∂R1
= (n̂ · R̂1)

(
jk+ 1

R1

)
A1

e−jkR1

R1

∂G
∂n′

= n̂ ·∇∇∇′G = −n̂ · R̂2
∂G
∂R2

= (n̂ · R̂2)
(
jk+ 1

R2

)
e−jkR2

4πR2

(17.13.4)

Dropping the 1/R2 terms, we find for the integrand of Eq. (17.13.1):

E1
∂G
∂n′

−G ∂E1

∂n′
= jkA1

4πR1R2

[
(n̂ · R̂2)−(n̂ · R̂1)

]
e−jk(R1+R2)

Except in the phase factor e−jk(R1+R2), we may replace R1 � r1 and R2 � r2, that is,

E1
∂G
∂n′

−G ∂E1

∂n′
= jkA1

4πr1r2

[
(n̂ · r̂2)−(n̂ · r̂1)

]
e−jk(R1+R2) (17.13.5)

Thus, we have for the diffracted field at point P2:

E = jkA1

4πr1r2

[
(n̂ · r̂2)−(n̂ · r̂1)

]∫
S
e−jk(R1+R2) dS′ (17.13.6)
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The quantity
[
(n̂ · r̂2)−(n̂ · r̂1)

]
is an obliquity factor. Next, we set r = r1 + r2 and

define the ”free-space” field at the point P2:

E0 = A1
e−jk(r1+r2)

r1 + r2
= A1

e−jkr

r
(17.13.7)

If the origin were the point of intersection between the aperture plane and the line
P1P2, then E0 would represent the field received at point P2 in the unobstructed case
when the aperture and screen are absent.

The ratio D = E/E0 may be called the diffraction coefficient and depends on the
aperture and the relative geometry of the points P1, P2:

D = E
E0
= jk

4πF
[
(n̂ · r̂2)−(n̂ · r̂1)

]∫
S
e−jk(R1+R2−r1−r2) dS′ (17.13.8)

where we defined the “focal length” between r1 and r2:

1

F
= 1

r1
+ 1

r2
⇒ F = r1r2

r1 + r2
(17.13.9)

The Fresnel approximation is obtained by expanding R1 and R2 in powers of r′ and
keeping only terms up to second order. We rewrite Eq. (17.13.3) in the form:

R1 = r1

√
1− 2r̂1 · r′

r1
+ r′ · r′

r2
1
, R2 = r2

√
1− 2r̂2 · r′

r2
+ r′ · r′

r2
2

Next, we apply the Taylor series expansion up to second order:

√
1+ x = 1+ 1

2
x− 1

8
x2

This gives the approximations of R1, R2, and R1 +R2 − r1 − r2:

R1 = r1 − r̂1 · r′ + 1

2r1

[
r′ · r′ − (r̂1 · r′)2]

R2 = r2 − r̂2 · r′ + 1

2r2

[
r′ · r′ − (r̂2 · r′)2]

R1 +R2 − r1 − r2 = −(r̂1 + r̂2)·r′ + 1

2

[(
1

r1
+ 1

r2

)
r′ · r′ − (r̂1 · r′)2

r1
− (r̂2 · r′)2

r2

]

To simplify this expression, we now assume that the origin is the point of intersection
of the line of sight P1P2 and the aperture plane. Then, the vectors r1 and r2 are anti-
parallel and so are their unit vectors r̂1 = −r̂2. The linear terms cancel and the quadratic
ones combine to give:

R1+R2−r1−r2 = 1

2F
[
r′ ·r′−(r̂2 ·r′)2] = 1

2F
∣∣r′− r̂2(r′ · r̂2)

∣∣2 = 1

2F
b′ ·b′ (17.13.10)

where we defined b′ = r′ − r̂2(r′ · r̂2), which is the perpendicular vector from the point
P′ to the line-of-sight P1P2, as shown in Fig. 17.13.1.
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It follows that the Fresnel approximation of the diffraction coefficient for an arbitrary
aperture will be given by:

D = E
E0
= jk(n̂ · r̂2)

2πF

∫
S
e−jk(b

′·b′)/(2F) dS′ (17.13.11)

A further simplification is obtained by assuming that the aperture plane is the xy-
plane and that the line P1P2 lies on the yz plane at an angle θ with the z-axis, as shown
in Fig. 17.13.2.

Fig. 17.13.2 Fresnel diffraction by rectangular aperture.

Then, we have r′ = x′x̂ + y′ŷ, n̂ = ẑ, and r̂2 = ẑ cosθ + ŷ sinθ. It follows that
n̂ · r̂2 = cosθ, and the perpendicular distance b′ · b′ becomes:

b′ · b′ = r′ · r′ − (r̂′ · r̂2)2= x′2 + y′2 − (y′ sinθ)2= x′2 + y′2 cos2 θ

Then, the diffraction coefficient (17.13.11) becomes:

D = jk cosθ
2πF

∫ x2

−x1

∫ y2

−y1
e−jk(x

′2+y′2 cos2 θ)/2F dx′dy′ (17.13.12)

where we assumed that the aperture limits are (with respect to the new origin):

−x1 ≤ x′ ≤ x2 , −y1 ≤ y′ ≤ y2

The end-points y1, y2 are shown in Fig. 17.13.2. The integrals may be expressed
in terms of the Fresnel functions C(x), S(x), and F(x)= C(x)−jS(x) discussed in
Appendix F. There, the complex function F(x) is defined by:

F(x)= C(x)−jS(x)=
∫ x

0
e−j(π/2)u

2
du (17.13.13)
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We change integration variables to the normalized Fresnel variables:

u =
√

k
πF

x′ , v =
√

k
πF

y′ cosθ (17.13.14)

where b′ = y′ cosθ is the perpendicular distance from P′ to the line P1P2, as shown in
Fig. 17.13.2. The corresponding end-points are:

ui =
√

k
πF

xi , vi =
√

k
πF

yi cosθ =
√

k
πF

bi , i = 1,2 (17.13.15)

Note that the quantities b1 = y1 cosθ and b2 = y2 cosθ are the perpendicular
distances from the edges to the line P1P2. Since dudv = (k cosθ/πF)dx′dy′, we
obtain for the diffraction coefficient:

D = j
2

∫ u2

−u1

e−jπu
2/2 du

∫ v2

−v1

e−jπv
2/2 dv = j

2

[F(u2)−F(−u1)
][F(v2)−F(−v1)

]

Noting that F(x) is an odd function and that j/2 = 1/(1− j)2, we obtain:

D = E
E0
= F(u1)+F(u2)

1− j
F(v1)+F(v2)

1− j (rectangular aperture) (17.13.16)

The normalization factors (1−j) correspond to the infinite aperture limit u1, u2, v1,
v2 → ∞, that is, no aperture at all. Indeed, since the asymptotic value of F(x) is
F(∞)= (1− j)/2, we have:

F(u1)+F(u2)
1− j

F(v1)+F(v2)
1− j −→ F(∞)+F(∞)

1− j
F(∞)+F(∞)

1− j = 1

In the case of a long slit along the x-direction, we only take the limit u1, u2 →∞:

D = E
E0
= F(v1)+F(v2)

1− j (diffraction by long slit) (17.13.17)

17.14 Knife-Edge Diffraction

The case of straight-edge or knife-edge diffraction is obtained by taking the limit y2 →
∞, or v2 → ∞, which corresponds to keeping the lower edge of the slit. In this limit
F(v2)→F(∞)= (1− j)/2. Denoting v1 by v, we have:

D(v)= 1

1− j
(
F(v)+1− j

2

)
, v =

√
k
πF

b1 (17.14.1)

Positive values of v correspond to positive values of the clearance distance b1, plac-
ing the point P2 in the illuminated region, as shown in Fig. 17.14.1. Negative values of
v correspond to b1 < 0, placing P2 in the geometrical shadow region behind the edge.

The magnitude-square |D|2 represents the intensity of the diffracted field relative
to the intensity of the unobstructed field. Since |1− j|2 = 2, we find:
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Fig. 17.14.1 Illuminated and shadow regions in straight-edge diffraction.

|D(v)|2 = |E|2
|E0|2 =

1

2

∣∣∣∣F(v)+1− j
2

∣∣∣∣2

(17.14.2)

or, in terms of the real and imaginary parts of F(v):

|D(v)|2 = 1

2

[(
C(v)+1

2

)2

+
(
S(v)+1

2

)2
]

(17.14.3)

The quantity |D(v)|2 is plotted versus v in Fig. 17.14.2. At v = 0, corresponding to
the line P1P2 grazing the top of the edge, we haveF(0)= 0, D(0)= 1/2, and |D(0)|2 =
1/4 or a 6 dB loss. The first maximum in the illuminated region occurs at v = 1.2172
and has the value |D(v)|2 = 1.3704, or a gain of 1.37 dB.
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Fig. 17.14.2 Diffraction coefficient in absolute and dB units.

The asymptotic behavior of D(v) for v → ±∞ is obtained from Eq. (F.4). We have
for large positive x:

F(±x)→ ±
(

1− j
2

+ j
πx

e−jπx
2/2
)
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This implies that:

D(v)=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1− 1− j
2πv

e−jπv
2/2, for v → +∞

−1− j
2πv

e−jπv
2/2, for v → −∞

(17.14.4)

We may combine the two expressions into one with the help of the unit-step function
u(v) by writing D(v) in the following form, which defines the asymptotic diffraction
coefficient d(v):

D(v)= u(v)+d(v)e−jπv2/2 (17.14.5)

where u(v)= 1 for v ≥ 0 and u(v)= 0 for v < 0.
With u(0)= 1, this definition requires d(0)= D(0)−v(0)= 0.5 − 1 = −0.5. But if

we define u(0)= 0.5, as is sometimes done, then, d(0)= 0. The asymptotic behavior of
D(v) can now be expressed in terms of the asymptotic behavior of d(v):

d(v)= −1− j
2πv

, for v → ±∞ (17.14.6)

In the illuminated region D(v) tends to unity, whereas in the shadow region it de-
creases to zero with asymptotic dB attenuation or loss:

L = −10 log10

∣∣d(v)∣∣2 = 10 log10

(
2π2v2) , as v → −∞ (17.14.7)

The MATLAB function diffr calculates the diffraction coefficient (17.14.1) at any
vector of values of v. It has usage:

D = diffr(v); % knife-edge diffraction coefficient D(v)

For values v ≤ 0.7, the diffraction loss can be approximated very well by the follow-
ing function [1133]:

L = −10 log10

∣∣D(v)∣∣2 = 6.9+ 20 log10

(√
(v+ 0.1)2+1− v− 0.1

)
(17.14.8)

Example 17.14.1: Diffraction Loss over Obstacles. The propagation path loss over obstacles and
irregular terrain is usually determined using knife-edge diffraction. Fig. 17.14.3 illustrates
the case of two antennas communicating over an obstacle. For small angles θ, the focal
length F is often approximated in several forms:

F = r1r2

r1 + r2
� d1d2

d1 + d2
� l1l2
l1 + l2

These approximations are valid typically when d1, d2 are much greater than λ and the
height h of the obstacle, typically, at least ten times greater. The clearance distance can
be expressed in terms of the heights:

b1 = y1 cosθ =
(
h1d2 + h2d1

d1 + d2
− h

)
cosθ
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Fig. 17.14.3 Communicating antennas over an obstacle.

The distance b1 can also be expressed approximately in terms of the subtended anglesα1,
α2, and α, shown in Fig. 17.14.3:

b1 � l1α1 � l2α2 ⇒ b1 =
√
l1l2α1α2 (17.14.9)

and in terms of α, we have:

α1 = αl2
l1 + l2 , α2 = αl1

l1 + l2 ⇒ b1 = αF ⇒ v = α
√

2F
λ

(17.14.10)

The case of multiple obstacles has been studied using appropriate modifications of the
knife-edge diffraction problem and the geometrical theory of diffraction [1134–1147]. ��

Example 17.14.2: Fresnel Zones. Consider two antennas separated by a distance d and an ob-
stacle at distance z from the midpoint with clearance b, as shown below. Fresnel zones and
the corresponding Fresnel zone ellipsoids help answer the question of what the minimum
value of the clearance b should be for efficient communication between the antennas.

0 1 2 3 4 5
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−2

−1

0

1

2

3

20
lo

g 1
0|

D
(ν

)|

ν

Diffraction Coefficient in dB

exact       
asymptotic  
extrema     
fresnel zone

The diffraction coefficient D(v) and its asymptotic form were given in Eqs. (17.14.1) and
(17.14.4), that is,

D(v)= 1

1− j
(
F(v)+1− j

2

)
, v =

√
k
πF

b =
√

2

λF
b , F = d1d2

d1 + d2
(17.14.11)
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and for positive and large clearance b, or equivalently, for large positive v,

Das(v)= 1− 1− j
2πv

e−jπv
2/2 = 1− 1√

2πv
e−jπ(v

2/2+1/4) (17.14.12)

As can be seen in the above figure on the right, the diffraction coefficients D(v) and
Das(v) agree closely even for small values of v. Therefore, the extrema can be obtained
from the asymptotic form. They correspond to the values of v that cause the exponential
in (17.14.12) to take on its extremal values of±1, that is, the v’s that satisfy v2/2+1/4 = n,
with integer n, or:

vn =
√

2n− 0.5 , n = 1,2, . . . (17.14.13)

The corresponding values of D(v), shown on the figure with black dots, are given by

Das(vn)= 1− 1√
2πvn

e−jπn = 1− 1√
2πvn

(−1)n (17.14.14)

An alternative set of v’s, also corresponding to alternating almost extremum values, are
those that define the conventional Fresnel zones, that is,

un =
√

2n , n = 1,2, . . . (17.14.15)

These are indicated by open circles on the graph. The corresponding D(v) values are:

Das(un)= 1− e−jπ/4√
2πun

(−1)n (17.14.16)

For clearances b that correspond to v’s that are too small, i.e., v < 0.5, the diffraction
coefficient D(v) becomes too small, impeding efficient communication. The smallest ac-
ceptable clearance b is taken to correspond to the first maximum of D(v), that is, v = v1

or more simply v = u1 =
√

2.

The locus of points (b, z) corresponding to a fixed value of v, and hence to a fixed value
of the diffraction coefficient D(v), form an ellipsoid. This can be derived from (17.14.11)
by setting d1 = d/2+ z and d2 = d/2− z, that is,

v =
√

2

λF
b ⇒ b2 = λF

2
v2 = λ(d2/4− z2)

2d
v2 , because F = d1d2

d1 + d2
= d2/4− z2

d

which can be rearranged into the equation of an ellipse:

(
8

v2λd

)
b2 +

(
4

d2

)
z2 = 1

For v = u1 =
√

2, this defines the first Fresnel zone ellipse, which gives the minimum
acceptable clearance for a given distance z:

(
4

λd

)
b2 +

(
4

d2

)
z2 = 1 (17.14.17)

If the obstacle is at midpoint (z = 0), the minimum clearance becomes:

b = 1

2

√
λd (17.14.18)
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For example, for a distance of d = 1 km, using a cell phone frequency of f = 1 GHz,
corresponding to wavelength λ = 30 cm, we find b = √λd/2 = 8.66 meters.

A common interpetation and derivation of Fresnel zones is to consider the path difference
between the rays following the straight path connecting the two antennas and the path
getting scattered from the obstacle, that is, Δl = l1 + l2 − d. From the indicated triangles,
and assuming that b� d1 and b� d2, we find:

l1 =
√
d2

1 + b2 � d1 + b2

2d1
, l2 =

√
d2

2 + b2 � d2 + b2

2d2

which leads to the following path length Δl, expressed in terms of v:

Δl = l1 + l2 − d = b2

2

(
1

d1
+ 1

d2

)
= b2

2F
= λ

4
v2

The corresponding phase difference between the two paths, e−jkΔl, will be then:

e−jkΔl = e−jπv2/2 (17.14.19)

which has the same form as in the diffraction coefficient Das(v). The values v = un =√
2n will make the path difference a multiple of λ/2, that is, Δl = nλ/2, resulting in the

alternating phase e−jkΔl = (−1)n.

The discrepancy between the choices vn and un arises from using D(v) to find the alter-
nating maxima, versus using the plain phase (17.14.19). ��

The Fresnel approximation is not invariant under shifting the origin. Our choice of
origin above is not convenient because it depends on the observation point P2. If we
choose a fixed origin, such as the point O in Fig. 17.14.4, then, we must determine the
corresponding Fresnel coefficient.

Fig. 17.14.4 Fresnel diffraction by straight edge.

We assume that the points P1, P2 lie on the yz plane and take P2 to lie in the shadow
region. The angles θ1, θ2 may be chosen to be positive or negative to obtain all possible
locations of P1, P2 relative to the screen.
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The diffraction coefficient is still given by Eq. (17.13.8) but with r1, r2 replaced by
the distances l1, l2. The unit vectors towards P1 and P2 are:

l̂1 = −ẑ cosθ1 − ŷ sinθ1 , l̂2 = ẑ cosθ2 − ŷ sinθ2 (17.14.20)

Since r′ = x′x̂+ y′ŷ and n̂ = ẑ, we find:

l̂1 · r′ = −y′ sinθ1 , l̂2 · r′ = −y′ sinθ2 , n̂ · l̂1 = − cosθ1 , n̂ · l̂2 = cosθ2

The quadratic approximation for the lengths R1, R2 gives, then:

R1 +R2 − l1 − l2 = −(̂l1 + l̂2)·r′ + 1

2

[(
1

l1
+ 1

l2

)
(r′ · r′)− (̂l1 · r′)2

l1
− (̂l2 · r′)2

l2

]

= y′(sinθ1 + sinθ2)+
(

1

l1
+ 1

l2

)
x′2

2
+
(

cos2 θ1

l1
+ cos2 θ2

l2

)
y′2

2

= 1

2F
x′2 + 1

2F′
[
y′2 + 2F′y′(sinθ1 + sinθ2)

]

= 1

2F
x′2 + 1

2F′
(y′ + y0)2− 1

2F′
y2

0

where we defined the focal lengths F,F′ and the shift y0:

1

F
= 1

l1
+ 1

l2
,

1

F′
= cos2 θ1

l1
+ cos2 θ2

l2
, y0 = F′(sinθ1 + sinθ2) (17.14.21)

Using these approximations in Eq. (17.13.6) and replacing r1, r2 by l1, l2, we find:

E = jkA1e−jk(l1+l2)

4πl1l2

[
(n̂ · l̂2)−(n̂ · l̂1)

]∫
S
e−jk(R1+R2−l1−l2) dS′

= jkA1e−k(l1+l2)

4πl1l2
(cosθ1 + cosθ2)ejky

2
0/2F′

∫
e−jkx

′2/2F−jk(y′+y0)2/2F′ dx′dy′

The x′-integral is over the range −∞ < x′ < ∞ and can be converted to a Fresnel
integral with the change of variables u = x′√k/(πF):

∫∞
−∞
e−jkx

′2/2F dx′ =
√
πF
k

∫∞
−∞
e−jπu

2/2 du =
√
πF
k
(1− j)

The y′-integral is over the upper-half of the xy-plane, that is, 0 ≤ y′ < ∞. Defining
the Fresnel variables u = (y′ + y0)

√
k/(πF′) and v = y0

√
k/(πF′), we find:

∫∞
0
e−jk(y

′+y0)2/2F′ dy′ =
√
πF′

k

∫∞
v
e−jπu

2/2 du =
√
πF′

k
(1− j)D(−v)

where the function D(v) was defined in Eq. (17.14.1). Putting all the factors together,
we may write the diffracted field at the point P2 in the form:

E = Eedge
e−jkl2√
l2
Dedge (straight-edge diffraction) (17.14.22)
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where we set ky2
0/2F′ = πv2/2 and defined the incident field Eedge at the edge and the

overall edge-diffraction coefficient Dedge by:

Eedge = A1
e−jkl1
l1

, Dedge =
√
FF′

l2

(
cosθ1 + cosθ2

2

)
ejπv

2/2D(−v) (17.14.23)

The second factor (e−jkl2/
√
l2) in (17.14.22) may be interpreted as a cylindrical wave

emanating from the edge as a result of the incident field Eedge. The third factor Dedge is
the angular gain of the cylindrical wave. The quantity v may be written as:

v =
√

k
πF′

y0 =
√
kF′

π
(sinθ1 + sinθ2) (17.14.24)

Depending on the sign and relative sizes of the angles θ1 and θ2, it follows that
v > 0 when P2 lies in the shadow region, and v < 0 when it lies in the illuminated
region. For large positive v, we may use Eq. (17.14.4) to obtain the asymptotic form of
the edge-diffraction coefficient Dedge:

Dedge =
√
FF′

l2
cosθ1 + cosθ2

2
ejπv

2/2 1− j
2πv

e−jπv
2/2 =

√
FF′

l2
cosθ1 + cosθ2

2

1− j
2πv

Writing
√
F/l2 =

√
l1/(l1 + l2) and replacing v from Eq. (17.14.24), the

√
F′ factor

cancels and we obtain:

Dedge =
√

l1
l1 + l2

(1− j)(cosθ1 + cosθ2)
4
√
πk(sinθ1 + sinθ2)

(17.14.25)

This expression may be simplified further by defining the overall diffraction angle
θ = θ1 + θ2, as shown in Fig. 17.14.4 and using the trigonometric identity:

cosθ1 + cosθ2

sinθ1 + sinθ2
= cot

(
θ1 + θ2

2

)

Then, Eq. (17.14.25) may be written in the form:

Dedge =
√

l1
l1 + l2

(1− j)
4
√
πk

cot
θ
2

(17.14.26)

The asymptotic diffraction coefficient is obtained from Eqs. (17.14.25) or (17.14.26)
by taking the limit l1 →∞, which gives

√
l1/(l1 + l2)→ 1. Thus,

Dedge = (1− j)(cosθ1 + cosθ2)
4
√
πk(sinθ1 + sinθ2)

= (1− j)
4
√
πk

cot
θ
2

(17.14.27)

Eqs. (17.14.26) and (17.14.27) are equivalent to those given in [1125].
The two choices for the origin lead to two different expressions for the diffracted

fields. However, the expressions agree near the forward direction, θ � 0. It is easily
verified that both Eq. (17.14.1) and (17.14.26) lead to the same approximation for the
diffracted field:

E = Eedge
e−jkl2√
l2

√
l1

l1 + l2
1− j

2
√
πkθ

(17.14.28)
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17.15 Geometrical Theory of Diffraction

Geometrical theory of diffraction is an extension of geometrical optics [1134–1140]. It
views diffraction as a local edge effect. In addition to the ordinary rays of geometrical
optics, it postulates the existence of “diffracted rays” from edges. The diffracted rays
can reach into shadow regions, where geometrical optics fails.

An incident ray at an edge generates an infinity of diffracted rays emanating from the
edge having different angular gains given by a diffraction coefficientDedge. An example
of such a diffracted ray is given by Eq. (17.14.22).

The edge-diffraction coefficient Dedge depends on (a) the type of the incident wave,
such as plane wave, or spherical, (b) the type and local geometry of the edge, such as a
knife-edge or a wedge, and (c) the directions of the incident and diffracted rays.

The diffracted field and coefficient are usually taken to be in their asymptotic forms,
like those of Eq. (17.15.26). The asymptotic forms are derived from certain exactly
solvable canonical problems, such as a conducting edge, a wedge, and so on.

The first and most influential of all such problems was Sommerfeld’s solution of a
plane wave incident on a conducting half-plane [1111], and we discuss it below.

Fig. 17.15.1 shows a plane wave incident at an angle α on the conducting plane
occupying half of the xz-plane for x ≥ 0. The plane of incidence is taken to be the xy-
plane. Because of the cylindrical symmetry of the problem, we may assume that there
is no z-dependence and that the fields depend only on the cylindrical coordinates ρ,φ.

Fig. 17.15.1 Plane wave incident on conducting half-plane.

Two polarizations may be considered: TE, in which the electric field is E = ẑEz, and
TM, which has H = ẑHz. Using cylindrical coordinates defined in Eq. (E.2) of Appendix
E, and setting ∂/∂z = 0, Maxwell’s equations reduce in the two cases into:

(TE) ∇2Ez + k2Ez = 0, Hρ = − 1

jωμ
1

ρ
∂Ez
∂φ

, Hφ = 1

jωμ
∂Ez
∂ρ

(TM) ∇2Hz + k2Hz = 0, Eρ = 1

jωε
1

ρ
∂Hz
∂φ

, Eφ = − 1

jωε
∂Hz
∂ρ

(17.15.1)
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where k2 =ω2με, and the two-dimensional∇∇∇2 is in cylindrical coordinates:

∇2 = 1

ρ
∂
∂ρ

(
ρ
∂
∂ρ

)
+ 1

ρ2

∂2

∂φ2
(17.15.2)

The boundary conditions require that the tangential electric field be zero on both
sides of the conducting plane, that is, for φ = 0 and φ = 2π. In the TE case, the
tangential electric field is Ez, and in the TM case, Ex = Eρ cosφ − Eφ sinφ = Eρ =
(1/jωερ)(∂Hz/∂φ), for φ = 0,2π. Thus, the boundary conditions are:

(TE) Ez = 0, for φ = 0 and φ = 2π

(TM)
∂Hz
∂φ

= 0, for φ = 0 and φ = 2π
(17.15.3)

In Fig. 17.15.1, we assume that 0 ≤ α ≤ 90o and distinguish three wedge regions
defined by the half-plane and the directions along the reflected and transmitted rays:

reflection region (AOB): 0 ≤ φ ≤ π−α
transmission region (BOC): π−α ≤ φ ≤ π+α
shadow region (COA): π+α ≤ φ ≤ 2π

(17.15.4)

The case when 90o ≤ α ≤ 180o is shown in Fig. 17.15.2, in which α has been
redefined to still be in the range 0 ≤ α ≤ 90o. The three wedge regions are now:

reflection region (AOB): 0 ≤ φ ≤ α
transmission region (BOC): α ≤ φ ≤ 2π−α
shadow region (COA): 2π−α ≤ φ ≤ 2π

(17.15.5)

Fig. 17.15.2 Plane wave incident on conducting half-plane.

We construct the Sommerfeld solution in stages. We start by looking for solutions
of the Helmholtz equation∇2U+k2U = 0 that have the factored form: U = ED, where
E is also a solution, but a simple one, such as that of the incident plane wave. Using the
differential identities of Appendix C, we have:

∇2U + k2U = D(∇2E + k2E
)+ E∇2D+ 2∇∇∇E ·∇∇∇D
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Thus, the conditions ∇2U + k2U = 0 and ∇2E + k2E = 0 require:

E∇2D+ 2∇∇∇E ·∇∇∇D = 0 ⇒ ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = 0 (17.15.6)

If we assume that E is of the form E = ejf , where f is a real-valued function, then,
equating to zero the real and imaginary parts of ∇2E + k2E = 0, we find for f :

∇2E + k2E = E(k2 −∇∇∇f ·∇∇∇f + j∇2f
) = 0 ⇒ ∇2f = 0 , ∇∇∇f ·∇∇∇f = k2 (17.15.7)

Next, we assume that D is of the form:

D = D0

∫ v
−∞
e−jg(u)du (17.15.8)

where D0 is a constant, v is a function of ρ,φ, and g(u) is a real-valued function to be
determined. Noting that ∇∇∇D = D0e−jg∇∇∇v and ∇∇∇g = g′(v)∇∇∇v, we find:

∇∇∇D = D0e−jg∇∇∇v , ∇2D = D0e−jg
(∇2v− jg′(v)∇∇∇v ·∇∇∇v)

Then, it follows from Eq. (17.15.6) that ∇2D+ 2(∇∇∇ lnE)·∇∇∇D = ∇2D+ j∇∇∇f ·∇∇∇D and:

∇2D+ j∇∇∇f ·∇∇∇D = D0e−jg
[∇2v+ j(2∇∇∇f ·∇∇∇v− g′∇∇∇v ·∇∇∇v)]= 0

Equating the real and imaginary parts to zero, we obtain the two conditions:

∇2v = 0 ,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g′(v) (17.15.9)

Sommerfeld’s solution involves the Fresnel diffraction coefficient of Eq. (17.14.1),
which can be written as follows:

D(v)= 1

1− j
[

1− j
2

+F(v)
]
= 1

1− j
∫ v
−∞
e−jπu

2/2du (17.15.10)

Therefore, we are led to choose g(u)= πu2/2 and D0 = 1/(1− j). To summarize,
we may construct a solution of the Helmholtz equation in the form:

∇2U + k2U = 0 , U = ED = ejfD(v) (17.15.11)

where f and v must be chosen to satisfy the four conditions:

∇2f = 0, ∇∇∇f ·∇∇∇f = k2

∇2v = 0,
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = g′(v)= πv

(17.15.12)

It can be verified easily that the functions u = ρa cosaφ and u = ρa sinaφ are solu-
tions of the two-dimensional Laplace equation∇2u = 0, for any value of the parameter
a. Taking f to be of the form f = Aρa cosaφ, we have the condition:

∇∇∇f = Aaρa−1[ρ̂ρρ cosaφ− φ̂φφ sinaφ
] ⇒ ∇∇∇f ·∇∇∇f = A2a2ρ2(a−1) = k2
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This immediately implies that a = 1 and A2 = k2, so that A = ±k. Thus, f =
Aρ cosφ = ±kρ cosφ. Next, we choose v = Bρa cosaφ. Then:

∇∇∇f = A(ρ̂ρρ cosφ− φ̂φφ sinφ)

∇∇∇v = Baρa−1[ρ̂ρρ cosaφ− φ̂φφ sinaφ
]

∇∇∇f ·∇∇∇v = ABaρa−1[cosφ cosaφ+ sinφ sinaφ
] = ABaρa−1 cos(φ− aφ)

∇∇∇v ·∇∇∇v = B2a2ρ2(a−1)

Then, the last of the conditions (17.15.12) requires that:

1

πv
2∇∇∇f ·∇∇∇v
∇∇∇v ·∇∇∇v = 2Aρ1−2a cos(φ− aφ)

πaB2 cosaφ
= 1

which implies that a = 1/2 and B2 = 2A/πa = 4A/π. But since A = ±k, only the
case A = k is compatible with a real coefficient B. Thus, we have B2 = 4k/π, or,
B = ±2

√
k/π.

In a similar fashion, we find that if we take v = Bρa sinaφ, then a = 1/2, but now
B2 = −4A/π, requiring that A = −k, and B = ±2

√
k/π. In summary, we have the

following solutions of the conditions (17.15.12):

f = +kρ cosφ, v = ±2

√
k
π
ρ1/2 cos

φ
2

f = −kρ cosφ, v = ±2

√
k
π
ρ1/2 sin

φ
2

(17.15.13)

The corresponding solutions (17.15.11) of the Helmholtz equation are:

U(ρ,φ)= ejkρ cosφD(v) , v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφD(v) , v = ±2

√
k
π
ρ1/2 sin

φ
2

(17.15.14)

The function D(v) may be replaced by the equivalent form of Eq. (17.14.5) in order
to bring out its asymptotic behavior for large v:

U(ρ,φ)= ejkρ cosφ[u(v)+d(v)e−jπv2/2], v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφ[u(v)+d(v)e−jπv2/2], v = ±2

√
k
π
ρ1/2 sin

φ
2

Using the trigonometric identities cosφ = 2 cos2(φ/2)−1 = 1 − 2 sin2(φ/2), we
find for the two choices of v:

kρ cosφ− 1

2
πv2 = kρ

[
cosφ− 2 cos2 φ

2

]
= −kρ

−kρ cosφ− 1

2
πv2 = −kρ

[
cosφ+ 2 sin2 φ

2

]
= −kρ
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Thus, an alternative form of Eq. (17.15.14) is:

U(ρ,φ)= ejkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√
k
π
ρ1/2 cos

φ
2

U(ρ,φ)= e−jkρ cosφ u(v)+e−jkρ d(v) , v = ±2

√
k
π
ρ1/2 sin

φ
2

(17.15.15)

Shifting the origin of the angle φ still leads to a solution. Indeed, defining φ′ =
φ±α, we note the property ∂/∂φ′ = ∂/∂φ, which implies the invariance of the Laplace
operator under this change. The functions U(ρ,φ ± α) are the elementary solutions
from which the Sommerfeld solution is built.

Considering the TE case first, the incident plane wave in Fig. 17.15.1 is E = ẑEi,
where Ei = E0e−jk·r, with r = x̂ρ cosφ + ŷρ sinφ and k = −k(x̂ cosα + ŷ sinα). It
follows that:

k · r = −kρ(cosφ cosα+ sinφ sinα)= −kρ cos(φ−α)
Ei = E0e−jk·r = E0ejkρ cos(φ−α) (17.15.16)

The image of this electric field with respect to the perfect conducting plane will
be the reflected field Er = −E0e−jkr·r, where kr = k(−x̂ cosα + ŷ sinα), resulting in
Er = −E0ejkρ cos(φ+α). The sum Ei + Er does vanish for φ = 0 and φ = 2π, but it also
vanishes for φ = π. Therefore, it is an appropriate solution for a full conducting plane
(the entire xz-plane), not for the half-plane.

Sommerfeld’s solution, which satisfies the correct boundary conditions, is obtained
by forming the linear combinations of the solutions of the type of Eq. (17.15.14):

Ez = E0
[
ejkρ cosφi D(vi)−ejkρ cosφr D(vr)

]
(TE) (17.15.17)

where

φi = φ−α, vi = 2

√
k
π
ρ1/2 cos

φi
2

φr = φ+α, vr = 2

√
k
π
ρ1/2 cos

φr
2

(17.15.18)

For the TM case, we form the sum instead of the difference:

Hz = H0
[
ejkρ cosφi D(vi)+ejkρ cosφr D(vr)

]
(TM) (17.15.19)

The boundary conditions (17.15.3) are satisfied by both the TE and TM solutions.
As we see below, the choice of the positive sign in the definitions of vi and vr was
required in order to produce the proper diffracted field in the shadow region. Using the
alternative forms (17.15.15), we separate the terms of the solution as follows:

Ez = E0ejkρ cosφi u(vi)−E0ejkρ cosφr u(vr)+E0e−jkρ
[
d(vi)−d(vr)

]
(17.15.20)
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The first two terms correspond to the incident and reflected fields. The third term is
the diffracted field. The algebraic signs of vi and vr are as follows within the reflection,
transmission, and shadow regions of Eq. (17.15.4):

reflection region: 0 ≤ φ < π−α, vi > 0, vr > 0
transmission region: π−α < φ < π+α, vi > 0, vr < 0
shadow region: π+α < φ ≤ 2π, vi < 0, vr < 0

(17.15.21)

The unit-step functions will be accordingly present or absent resulting in the follow-
ing fields in these three regions:

reflection region: Ez = Ei + Er + Ed
transmission region: Ez = Ei + Ed
shadow region: Ez = Ed

(17.15.22)

where we defined the incident, reflected, and diffracted fields:

Ei = E0ejkρ cosφi

Er = −E0ejkρ cosφr

Ed = E0e−jkρ
[
d(vi)−d(vr)

]
(17.15.23)

The diffracted field is present in all three regions, and in particular it is the only one
in the shadow region. For large vi and vr (positive or negative), we may replace d(v) by
its asymptotic form d(v)= −(1− j)/(2πv) of Eq. (17.14.6), resulting in the asymptotic
diffracted field:

Ed = −E0e−jkρ
1− j
2π

(
1

vi
− 1

vr

)

= −E0e−jkρ
1− j

2π2
√
k/πρ1/2

(
1

cos(φi/2)
− 1

cos(φr/2)

)

which can be written in the form:

Ed = E0
e−jkρ

ρ1/2 Dedge (17.15.24)

with an edge-diffraction coefficient:

Dedge = − 1− j
4
√
πk

⎛
⎜⎜⎝ 1

cos
φi
2

− 1

cos
φr
2

⎞
⎟⎟⎠ (17.15.25)

Using a trigonometric identity, we may write Dedge as follows:

Dedge = − 1− j
4
√
πk

⎛
⎜⎜⎝ 1

cos
φ−α

2

− 1

cos
φ+α

2

⎞
⎟⎟⎠ = −1− j√

πk

sin
φ
2

sin
α
2

cosφ+ cosα
(17.15.26)
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Eqs. (17.15.22) and (17.15.24) capture the essence of the geometrical theory of diffrac-
tion: In addition to the ordinary incident and reflected geometric optics rays, one also
has diffracted rays in all directions corresponding to a cylindrical wave emanating from
the edge with a directional gain of Dedge.

For the case of Fig. 17.15.2, the incident and reflected plane waves have propagation
vectors k = k(ẑ cosα − ŷ sinα) and kr = k(ẑ cosα + ŷ sinα). These correspond to
the incident and reflected fields:

Ei = E0e−jk·r = E0e−jkρ cos(φ+α) , Er = −E0e−jkr·r = −E0e−jkρ cos(φ−α)

In this case, the Sommerfeld TE and TM solutions take the form:

Ez = E0
[
e−jkρ cosφi D(vi)−e−jkρ cosφr D(vr)

]
Hz = H0

[
e−jkρ cosφi D(vi)+e−jkρ cosφr D(vr)

] (17.15.27)

where, now:

φi = φ+α, vi = 2

√
k
π
ρ1/2 sin

φi
2

φr = φ−α, vr = −2

√
k
π
ρ1/2 sin

φr
2

(17.15.28)

The choice of signs in vi and vr are such that they are both negative within the
shadow region defined by Eq. (17.15.5). The same solution can also be obtained from
Fig. 17.15.1 and Eq. (17.15.17) by replacing α by π−α.

17.16 Rayleigh-Sommerfeld Diffraction Theory

In this section, we recast Kirchhoff’s diffraction formula in a form that uses a Dirich-
let Green’s function (i.e., one that vanishes on the boundary surface) and obtain the
Rayleigh-Sommerfeld diffraction formula. In the next section, we show that this re-
formulation is equivalent to the plane-wave spectrum approach to diffraction, and in
Sec. 17.18, we use it to obtain the usual Fresnel and Fraunhofer approximations and
discuss a few applications from Fourier optics.

We will work with the scalar case, but the same method can be used for the vector
case. With reference to Fig. 17.16.1, we we consider a scalar field E(r) that satisfies the
source-free Helmholtz equation, (∇2 + k2)E(r)= 0, over the right half-space z ≥ 0.

We consider a closed surface consisting of the surface S∞ of a sphere of very large
radius centered at the observation point r and bounded on the left by its intersection S
with the xy plane, as shown in the Fig. 17.16.1. Clearly, in the limit of infinite radius,
the volume V bounded by S+S∞ is the right half-space z ≥ 0, and S becomes the entire
xy plane. Applying Eq. (17.10.3) to volume V, we have:

∫
V

[
G(∇′2E + k2E)−E (∇′2G+ k2G)

]
dV′ = −

∮
S+S∞

[
G
∂E
∂n′

− E ∂G
∂n′

]
dS′ (17.16.1)
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Fig. 17.16.1 Fields determined from their values on the xy-plane surface.

The surface integral over S∞ can be ignored by noting that n̂ is the negative of the
radial unit vector and therefore, we have after adding and subtracting the term jkEG:

−
∮
S∞

[
G
∂E
∂n′

− E ∂G
∂n′

]
dS′ =

∮
S∞

[
G
(
∂E
∂r

+ jkE
)
− E

(
∂G
∂r

+ jkG
)]
dS′

Assuming Sommerfeld’s outgoing radiation condition:

r
(
∂E
∂r

+ jkE
)
→ 0 , as r →∞

and noting that G = e−jkr/4πr also satisfies the same condition, it follows that the
above surface integral vanishes in the limit of large radius r. Then, in the notation of
Eq. (17.10.4), we obtain the standard Kirchhoff diffraction formula:

E(r)uV(r)=
∮
S

[
E
∂G
∂n′

−G ∂E
∂n′

]
dS′ (17.16.2)

Thus, if r lies in the right half-space, the left-hand side will be equal to E(r), and if r
is in the left half-space, it will vanish. Given a point r = (x, y, z), we define its reflection
relative to the xy plane by r− = (x, y,−z). The distance between r− and a source point
r′ = (x′, y′, z′) can be written in terms of the distance between the original point r and
the reflected source point r′− = (x′, y′,−z′):

R− = |r− − r′| =
√
(x− x′)2+(y − y′)2+(z+ z′)2 = |r− r′−|

whereas
R = |r− r′| =

√
(x− x′)2+(y − y′)2+(z− z′)2
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This leads us to define the reflected Green’s function:

G−(r, r′)= e−jkR−
4πR−

= G(r− r′−)= G(r− − r′) (17.16.3)

and the Dirichlet Green’s function:

Gd(r, r′)= G(r, r′)−G−(r, r′)= e−jkR

4πR
− e

−jkR−
4πR−

(17.16.4)

For convenience, we may choose the origin to lie on the xy plane. Then, as shown
in Fig. 17.16.1, when the source point r′ lies on the xy plane (i.e., z′ = 0), the function
Gd(r, r′) will vanish because R = R−. Next, we apply Eq. (17.16.1) at the observation
point r in the right half-space and at its reflection in the left half-plane, where (17.16.1)
vanishes:

E(r) =
∮
S

[
E
∂G
∂n′

−G ∂E
∂n′

]
dS′ , at point r

0 =
∮
S

[
E
∂G−
∂n′

−G− ∂E∂n′
]
dS′ , at point r−

where G− stands for G(r− − r′). But on the xy plane boundary, G− = G so that if we
subtract the two expressions we may eliminate the term ∂E/∂n′, which is the reason
for using the Dirichlet Green’s function:†

E(r)=
∮
S
E(r′)

∂
∂n′

(G−G−)dS′ =
∮
S
E(r′)

∂Gd
∂n′

dS′

On the xy plane, we have n̂ = ẑ, and therefore

∂G
∂n′

= ∂G
∂z′

∣∣∣∣
z′=0

and
∂G−
∂n′

= ∂G−
∂z′

∣∣∣∣
z′=0

= − ∂G
∂z′

∣∣∣∣
z′=0

Then, the two derivative terms double resulting in the Rayleigh-Sommerfeld diffrac-
tion formula [1110,1111]:

E(r)= 2

∮
S
E(r′)

∂G
∂z′

dS′ (Rayleigh-Sommerfeld) (17.16.5)

The indicated derivative of G can be expressed as follows:

∂G
∂z′

∣∣∣∣
z′=0

= z
R

(
jk+ 1

R

)
e−jkR

4πR
= cosθ

(
jk+ 1

R

)
e−jkR

4πR
(17.16.6)

where θ is the angle between the z-axis and the direction between the source and obser-
vation points, as shown in Fig. 17.16.1. For distances R� λ, or equivalently, k� 1/R,
one obtains the approximation:

∂G
∂z′

∣∣∣∣
z′=0

= jk cosθ
e−jkR

4πR
, for R� λ (17.16.7)

†By adding instead of subtracting the above integrals, we obtain the alternative Green’s function Gs =
G+G−, having vanishing derivative on the boundary.
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This approximation will be used in Sec. 17.18 to obtain the standard Fresnel diffrac-
tion representation. The quantity cosθ = z/R is an “obliquity” factor and is usually
omitted for paraxial observation points that are near the z axis.

Equation (17.16.5) expresses the field at any point in the right half-space in terms of
its values on the xy plane. In the practical application of this result, if the plane consists
of an infinite opaque screen with an aperture S cut in it, then the integration in (17.16.5)
is restricted only over the aperture S. The usual Kirchhoff approximations assume that:
(a) the field is zero over the opaque screen, and (b) the field, E(r′), over the aperture is
equal to the incident field from the left.

Eq. (17.16.5) is also valid in the vectorial case for each component of the electric field
E(r). However, these components are not independent of each other since they must
satisfy∇∇∇·E = 0, and are also coupled to the magnetic field through Maxwell’s equations.
Taking into account these constraints, one arrives at a modified form of (17.16.5). We
pursue this further in the next section.

17.17 Plane-Wave Spectrum Representation

The plane-wave spectrum representation builds up a (single-frequency) propagating
wave E(x, y, z) as a linear combination of plane waves e−j(kxx+kyy+kzz). The only as-
sumption is that the field must satisfy the wave equation, which for harmonic time
dependence ejωt is the Helmholtz equation

(∇2 + k2)E(x, y, z)= 0 , k = ω
c

(17.17.1)

where c is the speed of light in the propagation medium (assumed here to be homoge-
neous, isotropic, and lossless.) In solving the Helmholtz equation, one assumes initially
a solution of the form:

E(x, y, z)= Ê(kx, ky, z)e−jkxxe−jkyy

Inserting this into Eq. (17.17.1) and replacing ∂x → −jkx and ∂y → −jky, we obtain:

(
−k2

x − k2
y +

∂2

∂z2
+ k2

)
Ê(kx, ky, z)= 0

or, defining k2
z = k2 − k2

x − k2
y, we have:

∂2Ê(kx, ky, z)
∂z2

= −(k2 − k2
x − k2

y)Ê(kx, ky, z)= −k2
z Ê(kx, ky, z)

Its solution describing forward-moving waves (z ≥ 0) is:

Ê(kx, ky, z)= Ê(kx, ky,0)e−jkzz (17.17.2)

If k2
x + k2

y < k2, the wavenumber kz is real-valued and the solution describes a
propagating wave. If k2

x + k2
y > k2, then kz is imaginary and the solution describes an
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evanescent wave decaying with distance z. The two cases can be combined into one by
defining kz as follows:

kz =
⎧⎪⎨
⎪⎩

√
k2 − k2

x − k2
y , if k2

x + k2
y ≤ k2

−j
√
k2
x + k2

y − k2 , if k2
x + k2

y > k2
(17.17.3)

In the latter case, we have the decaying solution:

Ê(kx, ky, z)= Ê(kx, ky,0)e−z
√
k2
x+k2

y−k2 , z ≥ 0

The complete space dependence is Ê(kx, ky,0)e−jkxx−jkyye−jkzz. The most general
solution of Eq. (17.17.1) is obtained by adding up such plane-waves, that is, by the spatial
two-dimensional inverse Fourier transform:

E(x, y, z)=
∫∞
−∞

∫∞
−∞
Ê(kx, ky,0)e−jkxx−jkyye−jkzz

dkx dky
(2π)2

(17.17.4)

This is the plane-wave spectrum representation. Because kz is given by Eq. (17.17.3),
this solution is composed, in general, by both propagating and evanescent modes. Of
course, for large z, only the propagating modes survive. Setting z = 0, we recognize
Ê(kx, ky,0) to be the spatial Fourier transform of the field, E(x, y,0), on the xy plane:

E(x, y,0) =
∫∞
−∞

∫∞
−∞
Ê(kx, ky,0)e−jkxx−jkyy

dkx dky
(2π)2

Ê(kx, ky,0) =
∫∞
−∞

∫∞
−∞
E(x, y,0)ejkxx+jkyy dxdy

(17.17.5)

As in Chap. 3, we may give a system-theoretic interpretation to these results. Defin-
ing the “propagation” spatial filter ĝ(kx, ky, z)= e−jkzz, then Eq. (17.17.2) reads:

Ê(kx, ky, z)= ĝ(kx, ky, z)Ê(kx, ky,0) (17.17.6)

This multiplicative relationship in the wavenumber domain translates into a convo-
lutional equation in the space domain. Denoting by g(x, y, z) the spatial inverse Fourier
transform of ĝ(kx, ky, z)= e−jkzz, that is,

g(x, y, z)=
∫∞
−∞

∫∞
−∞
e−jkxx−jkyye−jkzz

dkx dky
(2π)2

(17.17.7)

we may write Eq. (17.17.4) in the form:

E(x, y, z)=
∫∞
−∞

∫∞
−∞
E(x′, y′,0)g(x− x′, y − y′, z)dx′ dy′ (17.17.8)

Eq. (17.17.8) is equivalent to the Rayleigh-Sommerfeld formula (17.16.5). Indeed, it
follows from Eq. (D.19) of Appendix D that

g(x− x′, y − y′, z)= −2
∂G
∂z

= 2
∂G
∂z′

, G = e−jkR

4πR
, R = |r− r′| (17.17.9)



17.17. Plane-Wave Spectrum Representation 705

with the understanding that z′ = 0. Thus, (17.17.8) takes the form of (17.16.5).
Next, we discuss the vector case as it applies to electromagnetic fields. To simplify

the notation, we define the two-dimensional transverse vectors r⊥ = x̂x+ ŷy and k⊥ =
x̂kx + ŷky, as well as the transverse gradient ∇∇∇⊥ = x̂∂x + ŷ∂y, so that the full three-
dimensional gradient is

∇∇∇ = x̂∂x ++ŷ∂y + ẑ∂z =∇∇∇⊥ + ẑ∂z

In this notation, Eq. (17.17.6) takes the form Ê(k⊥, z)= ĝ(k⊥, z)Ê(k⊥,0). The plane-
wave spectrum representations (17.17.4) and (17.17.8) now read (where the integral sign
denotes double integration):

E(r⊥, z) =
∫∞
−∞
Ê(k⊥,0) e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

=
∫∞
−∞
E(r⊥′,0)g(r⊥ − r⊥′, z)d2r⊥′

(17.17.10)
and

g(r⊥, z)=
∫∞
−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

(17.17.11)

In the vectorial case, E(r⊥, z) is replaced by a three-dimensional field, which can be
decomposed into its transverse x, y components and its longitudinal part along z:

E = x̂Ex + ŷEy + ẑEz ≡ E⊥ + ẑEz

The Rayleigh-Sommerfeld and plane-wave spectrum representations apply separately
to each component and can be written vectorially as

E(r⊥, z)=
∫∞
−∞

Ê(k⊥,0) e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

=
∫∞
−∞

E(r⊥′,0)g(r⊥ − r⊥′, z)d2r⊥′

(17.17.12)
Because E must satisfy the source-free Gauss’s law, ∇∇∇ · E = 0, this imposes certain

constraints among the Fourier componentsÊ that must be taken into account in writing
(17.17.12). Indeed, we have from (17.17.12)

∇∇∇ · E = −j
∫∞
−∞

k ·Ê(k⊥,0) e−jkzz e−jk⊥·r⊥ d2k⊥
(2π)2

= 0

which requires that k · Ê(k⊥,0)= 0. Separating the transverse and longitudinal parts,
we have:

k ·Ê = k⊥ ·Ê⊥ + kzÊz = 0 ⇒ Êz = −k⊥ ·Ê⊥
kz

It follows that the Fourier vector Ê must have the form:

Ê = Ê⊥ + ẑ Êz = Ê⊥ − ẑ
k⊥ ·Ê⊥
kz

(17.17.13)
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and, therefore, it is expressible only in terms of its transverse components Ê⊥. Then,
the correct plane-wave spectrum representation (17.17.12) becomes:

E(r⊥, z)=
∫∞
−∞

(
Ê⊥(k⊥,0)−ẑ

k⊥ ·Ê⊥(k⊥,0)
kz

)
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

(17.17.14)

But from the Weyl representations (D.18) and (D.20), we have with G = e−jkr/4πr:

−2
∂G
∂z

=
∫∞
−∞
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

, −2∇∇∇⊥G =
∫∞
−∞

k⊥
kz
e−jkzz e−jk⊥·r⊥

d2k⊥
(2π)2

Then, (17.17.14) can be written convolutionally in the form:

E(r⊥, z)= −2

∫ [
E⊥
∂G
∂z

− ẑ∇∇∇⊥G · E⊥
]
d2r⊥′ (17.17.15)

where here G = e−jkR/4πR with R = |r − r′| and z′ = 0, and E⊥ in the integrand
stands for E⊥(r⊥′,0). Eq. (17.17.15) follows from the observation that in (17.17.14) the
following products of Fourier transforms (in k⊥) appear, which become convolutions in
the r⊥ domain:

Ê⊥(k⊥,0)·e−jkzz and Ê⊥(k⊥,0)·
(

k⊥
kz
e−jkzz

)

Because E⊥(r⊥′,0) does not depend on r, it is straightforward to verify using some
vector identities that

ẑ∇∇∇⊥G · E⊥ − E⊥
∂G
∂z

=∇∇∇× (ẑ× E⊥G)

This gives rise to the Rayleigh-Sommerfeld-type equation for the vector case:

E(r⊥, z)= 2∇∇∇×
∫

ẑ× E⊥(r⊥′,0)G(R)d2r⊥′ (17.17.16)

which can be abbreviated as

E(r)= 2∇∇∇×
∫
S

ẑ× E⊥GdS′ (17.17.17)

The magnetic field can be determined from Faraday’s law,∇∇∇× E = −jωμH :

H(r)= 2

−jωμ∇∇∇× E = 2

−jωμ∇∇∇×
(∇∇∇×

∫
S

ẑ× E⊥GdS′
)

(17.17.18)

The same results can be derived more directly by using the Franz formulas (17.10.13)
and making use of the extinction theorem as we did in Sec. 17.16. Applying (17.10.13)
to the closed surface S + S∞ of Fig. 17.16.1, and dropping the S∞ term, it follows that
the left-hand side of (17.10.13) will be zero if the point r is not in the right half-space.
To simplify the notation, we define the vectors:

e =
∫
S
G(ẑ× E)dS′ , h =

∫
S
G(ẑ×H)dS′
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where we took S to be the xy plane with the unit vector n̂ = ẑ. Then, Eqs. (17.10.13) and
(17.10.14) can be written as:

E(r)= 1

jωε
∇∇∇× (∇∇∇× h)+∇∇∇× e , H(r)= 1

−jωμ∇∇∇× (∇∇∇× e)+∇∇∇× h

Noting that e,h are transverse vectors and using some vector identities and the de-
composition∇∇∇ =∇∇∇⊥+ ẑ∂z, we can rewrite the above in a form that explicitly separates
the transverse and longitudinal parts, so that if r is in the right half-space:

E(r) = 1

jωε
[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2

zh+ ẑ∂z(∇∇∇⊥ · h)
]+∇∇∇⊥ × e+ ẑ× ∂ze

H(r) = 1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze+ ẑ∂z(∇∇∇⊥ · e)
]+∇∇∇⊥ × h+ ẑ× ∂zh

(17.17.19)

If r is chosen to be the reflected point r− on the left half-space, then G− = G and the
vectors e,h remain the same, but the gradient with respect to r− is now∇∇∇− =∇∇∇⊥− ẑ∂z,
arising from the replacement z → −z. Thus, replacing ∂z → −∂z in (17.17.19) and
setting the result to zero, we have:

0 = 1

jωε
[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2

zh− ẑ∂z(∇∇∇⊥ · h)
]+∇∇∇⊥ × e− ẑ× ∂ze

0 = 1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze− ẑ∂z(∇∇∇⊥ · e)
]+∇∇∇⊥ × h− ẑ× ∂zh

(17.17.20)

Separating (17.17.20) into its transverse and longitudinal parts, we have:

1

jωε
[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2

zh
] = ẑ× ∂ze , 1

jωε
[
ẑ∂z(∇∇∇⊥ · h)

] =∇∇∇⊥ × e

1

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze
] = ẑ× ∂zh , 1

−jωμ
[
ẑ∂z(∇∇∇⊥ · e

] =∇∇∇⊥ × h

(17.17.21)
Using these conditions into Eq. (17.17.19), we obtain the doubling of terms:

E(r) = 2∇∇∇⊥ × e+ 2 ẑ× ∂ze = 2∇∇∇× e

H(r) = 2

−jωμ
[∇∇∇⊥ × (∇∇∇⊥ × e)−∂2

ze+ ẑ∂z(∇∇∇⊥ · e)
] = 2

−jωμ∇∇∇× (∇∇∇× e)

(17.17.22)
which are the same as Eqs. (17.17.17) and (17.17.18). Alternatively, we may express the
diffracted fields in terms of the values of the magnetic field at the xy surface:

E(r) = 2

jωε
[∇∇∇⊥ × (∇∇∇⊥ × h)−∂2

zh+ ẑ∂z(∇∇∇⊥ · h)
] = 2

jωε
∇∇∇× (∇∇∇× h)

H(r) = 2∇∇∇⊥ × h+ 2 ẑ× ∂zh = 2∇∇∇× h

(17.17.23)

Eqs. (17.17.17) and (17.17.23) are equivalent to applying the Franz formulas with the
field-equivalent surface currents of Eqs. (17.1.2) and (17.1.3), respectively.

As in the scalar case, the vector method is applied in practice by assuming that the
fields on the aperture plane are the same as the incident fields from the left.
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Example 17.17.1: Oblique Plane Wave. Here, we show that the plane-wave spectrum method
correctly generates an ordinary plane wave from its transverse values at an input plane.
Consider a TM electromagnetic wave propagating at an angle θ0 with respect to the z axis,
as shown in the figure below. The electric field at an arbitrary point, and its transverse
part evaluated on the plane z′ = 0, are given by

E(r⊥, z) = E0(x̂ cosθ0 − ẑ sinθ0)e−j(k
0
xx+k0

zz)

E⊥(r⊥′,0) = x̂E0 cosθ0 e−jk
0
xx′ = x̂E0 cosθ0e−jk

0⊥·r⊥′

k0
x = k sinθ0 , k0

y = 0 , k0
z = k cosθ0

k0
⊥ = x̂k0

x + ŷk0
y = x̂k sinθ0

It follows that the spatial Fourier transform of E⊥(r⊥′,0) will be

Ê⊥(k⊥,0)=
∫∞
−∞

x̂E0 cosθ0 e−jk
0⊥·r⊥′ ejk⊥·r⊥

′
d2r⊥′ = x̂E0 cosθ0(2π)2δ(k⊥ − k0

⊥)

Then, the integrand of Eq. (17.17.14) becomes

Ê⊥ − ẑ
k⊥ ·Ê⊥
kz

= E0(x̂ cosθ0 − ẑ sinθ0)(2π)2δ(k⊥ − k0
⊥)

and Eq. (17.17.14) gives

E(r⊥, z) =
∫∞
−∞
E0(x̂ cosθ0 − ẑ sinθ0)(2π)2δ(k⊥ − k0

⊥)e−jkzz e−jk⊥·r⊥
d2k⊥
(2π)2

= E0(x̂ cosθ0 − ẑ sinθ0)e−j(k
0
xx+k0

zz)

which is the correct expression for the plane wave. For a TE wave a similar result holds. ��

17.18 Fresnel Diffraction and Fourier Optics

The Fresnel approximation for planar apertures is obtained from the Rayleigh-Sommerfeld
formula (17.16.5). Using (17.16.6), we have:

E(r⊥, z)=
∫
S
E(r⊥′,0)

2z
R

(
jk+ 1

R

)
e−jkR

4πR
d2r⊥′ (17.18.1)

where R = √
(x− x′)2+(y − y′)2+z2 = √|r⊥ − r⊥′|2 + z2. The Fresnel approximation

assumes that z is large enough such that |r⊥ − r⊥′| � z, which can realized if the
aperture has dimension d so that |r⊥′| < d, and one assumes that the observation point
r⊥ remains close to the z-axis (the paraxial approximation) such that |r⊥| < d, and z is
chosen such that z� d. Then, we can approximate R as follows:

R =
√
|r⊥ − r⊥′|2 + z2 = z

√
1+ |r⊥ − r⊥′|2

z2
� z

[
1+ 1

2

|r⊥ − r⊥′|2
z2

]
= z+ |r⊥ − r⊥′|2

2z
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where we used the Taylor series expansion
√

1+ x � 1+ x/2. Assuming also that R or
z is much greater than the wavelength of the wave, z� λ, so that k� 1/R we obtain

2z
R

(
jk+ 1

R

)
e−jkR

4πR
� jke

−jk(z+|r⊥−r⊥′|2/2z)

2πz
= jk

2πz
e−jkz e−jk|r⊥−r⊥′|2/2z (17.18.2)

where we set R � z in the amplitude factors, but kept the quadratic approximation in
the phase e−jkR. The Fresnel approximation is finally:

E(r⊥, z)= jk
2πz

e−jkz
∫
S
E(r⊥′,0) e−jk|r⊥−r⊥′|2/2z d2r⊥′ (Fresnel) (17.18.3)

This amounts to replacing the propagator impulse response g(r⊥, z) by the approx-
imation of Eq. (17.18.2):

g(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z = jk

2πz
e−jkz e−jk(x

2+y2)/2z (Fresnel) (17.18.4)

Noting that k = 2π/λ, the constant factor in front is often written as:

jk
2πz

= j
λz

The above approximations can also be understood from the plane-wave spectrum
point of view. The Fourier transform of (17.18.4) is obtained from the following Fourier
integral, which is a special case of (3.5.18):

√
jk

2πz

∫∞
−∞
e−jkx

2/2z ejkxx dx = ejk2
xz/2k (17.18.5)

Applying (17.18.5) with respect to the x and y integrations, we obtain the spatial
Fourier transform of g(r⊥, z):

ĝ(k⊥, z)= e−jkz ej(k2
x+k2

y)z/2k = e−jkz ej|k⊥|2z/2k (17.18.6)

Then, Eq. (17.18.3) can be written in its plane-wave spectrum form:

E(r⊥, z)= e−jkz
∫
S
Ê(k⊥,0) ej|k⊥|

2z/2k e−jk⊥·r⊥
d2k⊥
(2π)2

(17.18.7)

Eq. (17.18.6) can be obtained from the exact form ĝ(k⊥, z)= e−jkzz by assuming
that for large z the evanescent modes will be absent and assuming the approximation
k2
x + k2

y � k2 for the propagating modes. Then, we can write:

kz =
√
k2 − |k⊥|2 = k

√
1− |k⊥|

2

k2
� k

[
1− 1

2

|k⊥|2
k2

]
= k− |k⊥|

2

2k

and, hence
e−jkzz � e−jkz ej|k⊥|2z/2k
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Because of the assumption |k⊥| � k, the maximum transverse wavenumber will
be |k⊥| = k = 2π/λ, and correspondingly the smallest achievable transverse spatial
resolution will be Δr⊥ ∼ 1/|k⊥| ∼ λ, that is, about one wavelength. This is the basic
diffraction limit of optical instruments, such as lenses and microscopes.

Near-field optics methods [494–512], where the evanescent modes are not ignored,
overcome this limitation and can achieve much higher, subwavelength, resolutions.

Although ordinary lenses are diffraction-limited, it has been shown recently [360]
that “superlenses” made from metamaterials having negative refractive index can achieve
perfect resolution.

In the special case when the aperture field E(x′, y′,0) depends only on one trans-
verse coordinate, say, E(x′,0), the dependence of (17.18.3) on the y direction can be
integrated out using the integral

√
jk

2πz

∫∞
−∞
e−jk(y−y

′)2/2z dy′ = 1 (17.18.8)

and we obtain the following one-dimensional version of the Fresnel formula, written
convolutionally and in its plane-wave spectrum form:

E(x, z) =
√

jk
2πz

e−jkz
∫∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

= e−jkz
∫∞
−∞
Ê(kx,0) ejk

2
xz/2k dkx

2π

(17.18.9)

The Fraunhofer approximation is a limiting case of the Fresnel approximation when
the distance z is even larger than that in the Fresnel case. More precisely, it is obtained
in the far-field limit when k|r⊥′|2 � z, or, d2 � λz, where d is the size of the aperture.

In this approximation, the field E(r⊥, z) becomes proportional to the Fourier trans-
form Ê(k⊥,0) of the field at the input plane. It is similar to the radiation-field approxi-
mation in which the radiation fields are proportional to Fourier transform of the current
sources, that is, to the radiation vector.

A direct way of deriving the Fraunhofer approximation is by applying the stationary-
phase approximation—Eq. (F.22) of Appendix F—to the evaluation of the plane-wave
spectrum integral (17.18.7). Define the phase function

φ(k⊥)= |k⊥|2z
2k

− k⊥ · r⊥ =
[
k2
xz

2k
− kxx

]
+
[
k2
yz

2k
− kyy

]
≡ φx(kx)+φy(ky)

Then, the stationary-point with respect to the kx variable is

φ′x(kx)=
kxz
k
− x = 0 ⇒ kx = xk

z
, φ′′x (kx)=

z
k

and similar expressions for φy(ky). Thus, vectorially, the stationary point is at k⊥ =
kr⊥/z. Using Eq. (F.22), we obtain:

∫∞
−∞
Ê(k⊥,0) ejφ(k⊥)

d2k⊥
(2π)2

�
√

2πj
φ′′x (kx)

· 2πj
φ′′y (ky)

[
Ê(k⊥,0) ejφ(k⊥)

1

(2π)2

]
k⊥= kr⊥

z



17.18. Fresnel Diffraction and Fourier Optics 711

Noting that φ(k⊥)= −k|r⊥|2/2z at k⊥ = kr⊥/z, we finally find:

E(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z [Ê(k⊥,0)]k⊥= kr⊥

z
(Fraunhofer) (17.18.10)

A simpler way of deriving (17.18.10) is by using (17.18.3) and noting that

e−jk|r⊥−r⊥′|2/2z = e−jk|r⊥|2/2z e−jk|r⊥′|2/2z ejkr⊥·r⊥′/z

The factor e−jk|r⊥′|2/2z can be ignored if we assume that k|r⊥′|2 � z, which leads to:

E(r⊥, z)= jk
2πz

e−jkz e−jk|r⊥|
2/2z

∫∞
−∞
E(r⊥′,0) ejkr⊥·r⊥′/z d2r⊥′

and the last integral factor is recognized as Ê(k⊥,0) evaluated at k⊥ = kr⊥/z.

Example 17.18.1: Knife-Edge Diffraction. Let us revisit the problem of knife-edge diffraction
using the Fresnel formula (17.18.3). The infinite edge is along the y direction and it occu-
pies the region x < 0, as shown in the figure below. The incident plane-wave field and the
diffracted field at distance z are:

Einc(x, z)= E0e−jkz

E(x, z)=
√

jk
2πz

e−jkz
∫∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′

At the input plane, E(x′,0)= E0, for x′ ≥ 0, and E(x′,0)= 0, for x′ < 0. Then, the above
integral becomes:

E(x, z)= E0e−jkz
√

jk
2πz

∫ ∞
0
e−jk(x−x

′)2/2z dx′

Making the change of variables,√
k
2z
(x′ − x)=

√
π
2
u , v =

√
k
πz

x

the above integral can be reduced to the Fresnel integral F(x) of Appendix F:

E(x, z)= E0e−jkz
√
j
2

∫∞
−v
e−jπu

2/2 du = E0e−jkz
1

1− j
[
F(v)+1− j

2

]

This is identical (up to the paraxial assumption) to the case discussed in Sec. 17.14. When
x < 0, the observation point lies in the shadow region. ��

Example 17.18.2: Diffraction by an infinite slit. Consider an infinite slit on an opaque screen.
The y-dimension of the slit is infinite and its x-size is |x| ≤ a, as shown on the left in the
figure below. The same figure also shows an opaque strip of the same size.
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The incident field is a uniform plane wave, Einc(x, z)= E0e−jkz, whose values on the slit
are E(x′,0)= E0. The diffracted field at distance z is given by Eq. (17.18.9):

E(x, z)=
√

jk
2πz

e−jkz
∫∞
−∞
E(x′,0) e−jk(x−x

′)2/2z dx′ = E0

√
jk

2πz
e−jkz

∫ a
−a
e−jk(x−x

′)2/2z dx′

The integral can be reduced to the Fresnel integral F(x) of Appendix F by making the
change of variables:

√
k
2z
(x′ − x)=

√
π
2
u , v± =

√
k
πz

(±a− x)

so that√
jk

2πz

∫ a
−a
e−jk(x−x

′)2/2z dx′ =
√
j
2

∫ v+
v−
e−jπu

2/2 du = F(v+)−F(v−)
1− j ≡ D(x, z)

where we used
√
j/2 = 1/(1− j). Thus, E(x, z) becomes:

E(x, z)= e−jkz D(x, z) (17.18.11)

For the case of the strip, the limits of integration are changed to:

√
jk

2πz

(∫∞
a
+
∫ −a
−∞

)
e−jk(x−x

′)2/2z dx′ = F(∞)−F(v+)+F(v−)−F(−∞)
1− j = 1−D(x, z)

where we used F(∞)= −F(−∞)= (1 − j)/2. Thus, the diffracted field in the strip case
will be given by the complementary expression

E(x, z)= e−jkz [1−D(x, z)] (17.18.12)

This result is an example of the Babinet principle [598] that the sum of the fields from an
aperture and its complementary screen is equal to the field in the absence of the aperture:

Eslit(x, z)+Estrip(x, z)= e−jkz

Fig. 17.18.1 shows the diffracted patterns in the two cases. The graphs plot the quantities
|D(x, z)| and |1−D(x, z)| versus x in the two cases.

The slit was chosen to be four wavelengths wide, a = 4λ, and the diffracted patterns
correspond to the near, medium, and far distances z = a, z = 20a, and z = 100a. The
latter case corresponds to the Fraunhofer pattern having a small ratio a2/λz = 1/25.
For example, for the slit case, the corresponding pattern approximates (but it is not quite
there yet) the typical sinc-function Fourier transform of the rectangular slit distribution
E(x′,0)= E0, for −a ≤ x′ ≤ a :

Ê(kx,0)=
∫ a
−a
E0 ejkxx

′
dx′ = 2aE0

sin(kxa)
kxa

where this is to be evaluated at kx = kx/z for the diffraction pattern E(x, z). The property
that at the center of the strip, x = 0, the diffracted pattern is not zero is an example of the
so-called Poisson’s spot [598]. ��
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Fig. 17.18.1 Fresnel diffraction by a slit and a strip

Fig. 17.18.2 Field propagated from plane a to plane b through a thin optical element.

In Fourier optics applications, one considers the passage of light through various
optical elements that perform certain functions, such as Fourier transformation using
lenses. For example, Fig. 17.18.2 shows an input field starting at aperture plane a, then
propagating a distance z1 to a thin optical element where it is modified by a transmit-
tance function, and then propagating another distance z2 to an aperture plane b.

Assuming that the input/output relationship of the optical element is multiplicative,
E+(r⊥)= T(r⊥)E−(r⊥), the relationship between the output field at plane b to the input
field at plane a is obtained by successively applying the propagation equation (17.17.10):

Eout(r⊥) =
∫
S
g(r⊥ − u⊥, z2)E+(u⊥)d2u⊥ =

∫
S
g(r⊥ − u⊥, z2)T(u⊥)E−(u⊥)d2u⊥

=
∫
S
g(r⊥ − u⊥, z2)T(u⊥)g(u⊥ − r⊥′, z1)Ein(r⊥′)d2u⊥ d2r⊥′

=
∫
S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′

where the overall transfer function from plane a to plane b will be:

h(r⊥, r⊥′)=
∫
S
g(r⊥ − u⊥, z2)T(u⊥)g(u⊥ − r⊥′, z1)d2u⊥ (17.18.13)
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where we labeled the spatial x, y coordinates by r⊥′,u⊥, and r⊥ on the planes (a), the
element, and plane (b).

In a similar fashion, one can work out the transfer function of more complicated
configurations. For example, passing through two transmittance elements as shown in
Fig. 17.18.3, we will have:

Eout(r⊥)=
∫
S
h(r⊥, r⊥′)Ein(r⊥′)d2r⊥′ (17.18.14)

where

h(r⊥, r⊥′)=
∫
S
g(r⊥ − u⊥, z2)T2(u⊥)g(u⊥ − v⊥, z0)T1(v⊥)g(v⊥ − r⊥′, z1)d2u⊥ d2v⊥

(17.18.15)

Fig. 17.18.3 Field propagated from plane a to plane b through multiple optical elements.

Lenses are probably the most important optical elements. Their interesting proper-
ties arise from their transmittance function, which has the quadratic phase:

T(r⊥)= ejk|r⊥|2/2F = ejk(x2+y2)/2F (lens transmittance) (17.18.16)

where F is the focal length. Because the Fresnel propagation factor e−jk|r⊥|2/2z also has
the same type of quadratic phase, but with the opposite sign, it is possible for lenses to act
as spatial “dispersion compensation” elements, much like the dispersion compensation
and pulse compression filters of Chap. 3. They have many uses, such as compensating
propagation effects and focusing the waves on appropriate planes, or performing spatial
Fourier transforms.

The transmittance function (17.18.16) can be derived with the help of Fig. 17.18.4,
which shows a wave entering from the left a (convex) spherical glass surface at a distance
x from the axis.

Let R and d denote the radius of the spherical element, and its maximum width
along its axis to the flat back plane, and let n be its refractive index. The wave travels a
distance a in air and a distance b in the glass. If k is the free-space wavenumber, then
in the glass it changes to kg = kn. Therefore, the wave will accumulate the following
phase as it propagates from the front plane to the back plane:

e−jka e−jkgb
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Fig. 17.18.4 Transmittance of a thin spherical lens.

where we are assuming a thin lens, which allows us to ignore the bending of the ray
arising from refraction. Because, a+ b = d, we have for the net phase:

φ(x)= ka+ kgb = ka+ nk(d− a)= nkd− (n− 1)ka

The distance a is easily seen from the above figure to be:

a = R−
√
R2 − x2

Assuming that x� R, we can expand the square root to get:

a = R−R
√

1− x2

R2
� R−R

[
1− 1

2

x2

R2

]
= x2

2R

Thus, the phase φ(x) is approximately,

φ(x)= knd− (n− 1)ka = knd− (n− 1)kx2

2R

If we make up a convex lens by putting together two such spherical lenses with radii
R1 and R2, as shown in Fig. 17.18.4, then the net phase change between the front and
back planes will be, ignoring the constant nkd terms:

φ(x)= −(n− 1)
(

1

R1
+ 1

R2

)
kx2

2
≡ −kx

2

2F
(17.18.17)

where we defined the focal length F of the lens through the “lensmaker’s equation,”

1

F
= (n− 1)

(
1

R1
+ 1

R2

)
(17.18.18)

In a two-dimensional description, we replace x2 by |r⊥|2 = x2 + y2. Thus, the phase
change and corresponding transmittance function will be:

φ(r⊥)= −k|r⊥|
2

2F
⇒ T(r⊥)= e−jφ(r⊥) = ejk|r⊥|2/2F

716 17. Radiation from Apertures

Some examples of the various effects that can be accomplished with lenses can be
obtained by applying the configurations of Figs. 17.18.2 and 17.18.3 with appropriate
choices of the aperture planes and focal lengths. We will use the Fresnel approximation
(17.18.4) for g(r⊥, z) in all of the examples and assume that the transmittance (17.18.16)
extends over the entire xy plane—in effect, we are replacing the lens with the ideal case
of an infinitely thin transparency with transmittance (17.18.16).

The main property of a lens is to turn an incident plane wave from the left into
a spherical wave converging on the lens focus on the right, and similarly, if a source
of a spherical wave is placed at the focus on the left, then the diverging wave will be
converted into a plane wave after it passes through the lens. These cases are shown in
Fig. 17.18.5.

Fig. 17.18.5 Spherical waves converging to, or diverging from, a lens focal point.

The case on the left corresponds to the choices z1 = 0 and z2 = F in Fig. 17.18.2,
that is, the input plane coincides with the left plane of the lens. The incident wave has a
constant amplitude on the plane Ein(r⊥)= E0. Noting that g(r⊥′ −u⊥,0)= δ2(r⊥′ −u⊥),
we obtain from Eq. (17.18.13) with z2 = F:

h(r⊥, r⊥′)= T(r⊥′)g(r⊥ − r⊥′, F)= jk
2πF

e−jkF ejk|r⊥
′|2/2F e−jk|r⊥−r⊥′|2/2F

the quadratic phase terms combine as follows:

ejk|r⊥
′|2/2F e−jk|r⊥−r⊥′|2/2F = e−jk|r⊥|2/2F ejkr⊥·r⊥′/F

and result in the following transfer function:

h(r⊥, r⊥′)= T(r⊥′)g(r⊥ − r⊥′, F)= jk
2πF

e−jkF e−jk|r⊥|
2/2F ejkr⊥·r⊥′/F (17.18.19)

Its integration with the constant input results in:

E(r⊥, F)= jk
2πF

e−jkF E0e−jk|r⊥|
2/2F

∫∞
−∞

ejkr⊥·r⊥′/F d2r⊥′

The integral is equal to the Dirac delta, (2π)2δ(kr⊥/F)= (2π)2δ(r⊥)F2/k2. Thus,

E(r⊥, F)= j2πF
k

e−jkF E0 δ(r⊥)
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which is sharply focused onto the focal point r⊥ = 0 and z = F. For the second case
depicted on the right in Fig. 17.18.5, we first note that the paraxial approximation for a
spherical wave placed at the origin is:

E0
e−jkr

4πr
� E0

jk
4πz

e−jkz e−jk|r⊥|
2/2z , r � z− |r⊥|

2

2z

If this source is placed at the left focal point of the lens, then, the diverging paraxial
spherical wave, after traveling distance z = F, will arrive at the left plane of the lens:

Ein(r⊥′,0)= E0
jk

4πF
e−jkF e−jk|r⊥

′|2/2F ≡ E1 e−jk|r⊥
′|2/2F

The transmittance of the lens will compensate this propagation phase resulting into
a constant field at the output plane of the lens, which will then propagate to the right
as a plane wave:

E(r⊥′,0)= T(r⊥′)Ein(r⊥′,0)= ejk|r⊥′|2/2F E1 e−jk|r⊥
′|2/2F = E1

The propagated field to distance z is obtained from Eq. (17.18.3):

E(r⊥, z)= e−jkz jk
2πz

∫∞
−∞
E1e−jk|r⊥−r⊥′|2/2z d2r⊥′ = E1 e−jkz

jk
2πz

2πz
jk

= E1e−jkz

where the integral was evaluated using twice the result (17.18.8). Thus, the transmitted
wave is a uniform plane wave propagating along the z-direction.

To see the Fourier transformation property of lenses, consider again the left picture
in Fig. 17.18.5 with the output plane still placed at the right focal length z2 = F, but
take an arbitrary field Ein(r⊥′) incident at the left plane of the lens. The overall transfer
function is still the same as in Eq. (17.18.19), thus, giving:

E(r⊥, F) =
∫∞
−∞
h(r⊥ − r⊥′)Ein(r⊥′)d2r⊥′

= jk
2πF

e−jkF e−jk|r⊥|
2/2F

∫∞
−∞
Ein(r⊥′) ejkr⊥·r⊥′/F d2r⊥′

(17.18.20)

The last integral factor is recognized as the Fourier transform Êin(k⊥) evaluated at
wavenumber k⊥ = kr⊥/F. Thus, we obtain:

E(r⊥, F)= jk
2πF

e−jkF e−jk|r⊥|
2/2F[Êin(k⊥)

]
k⊥= kr⊥

F
(17.18.21)

This result is similar to the Fraunhofer case (17.18.10), but it is valid at the much
shorter Fresnel distance z = F, instead of the far-field distances. It is analogous to
the output of the pulse compression filter in chirp radar discussed in Chap. 3, see for
example Eq. (3.10.14).

It is left as an exercise to show that the extra quadratic phase factor in (17.18.21)
can be eliminated by using the configuration of Fig. 17.18.2 with both aperture planes
placed at the foci of the lens, that is, z1 = z2 = F, (known as a 2F system.)
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Fig. 17.18.6 Lens law of magnification.

Finally, let us look at the magnifying properties of a lens. Fig. 17.18.6 shows an
image placed at distance z1 from the left and its image formed at distance z2 on the
right. It is well-known that the distances z1, z2 must be related by:

1

z1
+ 1

z2
= 1

F
(17.18.22)

The magnification law relates the size of the image to the size of the object:

M = x2

x1
= z2

z1
(magnification ratio) (17.18.23)

These properties can be derived by tracing the rays emanating from the top of the
object. The ray that is parallel to the lens axis will bend to pass through the focal point
on the right. The ray from the top of the object through the left focal point will bend to
become parallel to the axis. The intersection of these two rays defines the top point of
the image. From the geometry of the graph one has:

x1

z1 − F =
x2

F
and

x2

z2 − F =
x1

F

The consistency of the equations requires the condition (z1−F)(z2−F)= F2, which
is equivalent to (17.18.22). Then, Eq. (17.18.23) follows by replacing F from (17.18.22)
into the ratio x2/x1 = (z2 − F)/F.

To understand (17.18.22) and (17.18.23) from the point of view of Fresnel diffraction,
we note that the transfer function (17.18.13) involves the following quadratic phase
factors, with the middle one being the lens transmittance:

e−jk|r⊥−u⊥|2/2z2 ejk|u⊥|
2/2F e−jk|u⊥−r⊥′|2/2z1

= e−jk|r⊥|2/2z2 e−jk|r⊥
′|2/2z1 e−jk(1/z1+1/z2−1/F)|u⊥|2/2 ejku⊥·(r⊥/z2+r⊥′/z1)

Because of Eq. (17.18.22), the term that depends quadratically on u⊥ cancels and
one is left only with a linear dependence on u⊥. This integrates into a delta function in
(17.18.13), resulting in

h(r⊥, r⊥′)= jke−jkz1

2πz1

jke−jkz2

2πz2
e−jk|r⊥|

2/2z2 e−jk|r⊥
′|2/2z1 (2π)2δ

(
kr⊥
z2

+ kr⊥′

z1

)
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The delta function forces r⊥ = −(z2/z1)r⊥′, which is the same as (17.18.23). The
negative sign means that the image is upside down. Noting that

δ
(
kr⊥
z2

+ kr⊥′

z1

)
= z2

1

k2
δ
(

r⊥′ + z1

z2
r⊥
)

we obtain for the field at the output plane:

Eout(r⊥)= −z1

z2
Ein

(
−z1

z2
r⊥
)
e−jk(z1+z2) e−jk|r⊥|

2(z1+z2)/2z2
2

which represents a scaled and reversed version of the input.
Some references on the Rayleigh-Sommerfeld diffraction theory, the plane-wave spec-

trum representation, and Fourier optics are [1110,1111] and [1148–1161].

17.19 Problems

17.1 Show that Eq. (17.4.9) can be written in the compact vectorial form:

E = −jk e
−jkr

4πr
r̂× [ẑ× f− η r̂× (ẑ× g)

]
, H = − jk

η
e−jkr

4πr
r̂× [r̂× (ẑ× f)+η ẑ× g

]

Similarly, show that Eqs. (17.4.10) and (17.4.11) can be written as:

E = −2jk
e−jkr

4πr
r̂× [ẑ× f

]
, H = −2jk

η
e−jkr

4πr
r̂× [r̂× (ẑ× f)

]

E = 2jkη
e−jkr

4πr
r̂× [r̂× (ẑ× g)

]
, H = −2jk

e−jkr

4πr
r̂× [ẑ× g

]
17.2 Prove the first pair of equations for E,H of the previous problem by working exclusively

with the Kottler formulas (17.4.2) and taking their far-field limits.

17.3 Explain in detail how the inequality (17.6.12) for the aperture efficiency ea may be thought
of as an example of the Schwarz inequality. Then, using standard properties of Schwarz
inequalities, prove that the maximum of ea is unity and is achieved for uniform apertures.
As a reminder, the Schwarz inequality for single-variable complex-valued functions is:∣∣∣∣∣

∫ b
a
f∗(x)g(x)dx

∣∣∣∣∣
2

≤
∫ b
a
|f(x)|2 dx ·

∫ b
a
|g(x)|2 dx

17.4 To prove the equivalence of the Kirchhoff diffraction and Stratton-Chu formulas, (17.10.6)
and (17.10.7), use the identities (C.29) and (C.32) of Appendix C, to obtain:∫

V

[
jωμG J+ 1

ε
G∇∇∇′ρ+G∇∇∇′ × Jm

]
dV′ =

∫
V

[
jωμG J− ρ

ε
∇∇∇′G+ Jm ×∇∇∇′G

]
dV′

−
∮
S

[
n̂
ρ
ε
G+ n̂× JmG

]
dS′

Then, using the identity (C.33), show that Eq. (17.10.6) can be rewritten in the form:

E(r)= −
∫
V

[
jωμG J− ρ

ε
∇∇∇′G+ Jm ×∇∇∇′G

]
dV′

+
∮
S

[
n̂
ρ
ε
G+ n̂× JmG

]
dS′

−
∮
S

[
n̂G∇∇∇′ · E− (n̂× E)×∇∇∇′G−G n̂× (∇∇∇′ × E)−(n̂ · E)∇∇∇′G]dS′
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Finally, use ρ/ε =∇∇∇′ · E and ∇∇∇′ × E+ Jm = −jωμH to obtain (17.10.7).

17.5 Prove the equivalence of the Stratton-Chu and Kottler formulas, (17.10.7) and (17.10.10), by
first proving and then using the following dual relationships:

∫
V

[
jωρ∇∇∇′G− (J ·∇∇∇′)∇∇∇′G]dV′ =

∮
S

[(
(n̂×H)·∇∇∇′)∇∇∇′G− jωε(n̂ · E)∇∇∇′G]

∫
V

[
jωρm∇∇∇′G− (Jm ·∇∇∇′)∇∇∇′G

]
dV′ = −

∮
S

[(
(n̂× E)·∇∇∇′)∇∇∇′G+ jωμ(n̂ ·H)∇∇∇′G]

To prove these, work component-wise, use Maxwell’s equations (17.2.1), and apply the di-
vergence theorem on the volume V of Fig. 17.10.1.

17.6 Prove the equivalence of the Kottler and Franz formulas, (17.10.10) and (17.10.11), by using
the identity ∇∇∇ × (∇∇∇ × A)= ∇∇∇(∇∇∇ · A)−∇2A, and by replacing the quantity k2G(r − r′) by
−δ(3)(r−r′)−∇′2G. Argue that the term δ(3)(r−r′)makes a difference only for the volume
integrals, but not for the surface integrals.

17.7 Prove the equivalence of the modified Stratton-Chu and Kirchhoff diffraction integral for-
mulas of Eq. (17.12.1) and (17.12.2) by using the identity (C.42) of Appendix C and replacing
∇∇∇′ · E = 0 and∇∇∇′ × E = −jωμH in the source-less region under consideration.

17.8 Prove the equivalence of the Kottler and modified Stratton-Chu formulas of Eq. (17.12.1) and
(17.12.2) by subtracting the two expressions, replacing jωεE =∇∇∇′×H , and using the Stokes
identity (C.38) of Appendix C.

17.9 Consider a reflector antenna fed by a horn, as shown
on the right. A closed surface S = Sr + Sa is such
that the portion Sr caps the reflector and the portion
Sa is an aperture in front of the reflector. The feed
lies outside the closed surface, so that the volume V
enclosed by S is free of current sources.

Applying the Kottler version of the extinction theorem of Sec. 17.10 on the volume V, show
that for points r outsideV, the field radiated by the induced surface currents on the reflector
Sr is equal to the field radiated by the aperture fields on Sa, that is,

E rad(r) = 1

jωε

∫
Sr

[
k2G J s +

(
J s ·∇∇∇′

)∇∇∇′G]dS′

= 1

jωε

∫
Sa

[
k2G(n̂×H )+((n̂×H )·∇∇∇′)∇∇∇′G+ jωε(n̂× E )×∇∇∇′G]dS′

where the induced surface currents on the reflector are J s = n̂r ×H and Jms = −n̂r ×E, and
on the perfectly conducting reflector surface, we must have Jms = 0.

This result establishes the equivalence of the so-called aperture-field and current-distribution
methods for reflector antennas [1168].

17.10 Consider an x-polarized uniform plane wave incident obliquely on the straight-edge aperture
of Fig. 17.14.4, with a wave vector direction k̂1 = ẑ cosθ1 + ŷ sinθ1. First show that the
tangential fields at an aperture point r′ = x′ x̂+y′ ŷ on the aperture above the straight-edge
are given by:

Ea = x̂E0e−jky
′ sinθ1 , Ha = ŷ

E0

η0
cosθ1e−jky

′ sinθ1

Then, using Kottler’s formula (17.12.1), and applying the usual Fresnel approximations in
the integrand, as was done for the point source in Fig. 17.14.4, show that the diffracted
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wave below the edge is given by Eqs. (17.14.22)–(17.14.24), except that the field at the edge
is Eedge = E0, and the focal lengths are in this case F = l2 and F′ = l2/ cos2 θ2

Finally, show that the asymptotic diffracted field (when l2 → ∞), is given near the forward
direction θ � 0 by:

E = Eedge
e−jkl2√
l2

1− j
2
√
πkθ

17.11 Assume that the edge in the previous problem is a perfectly conducting screen. Using the
field-equivalence principle with effective current densities on the aperture above the edge
J s = 0 and Jms = −2n̂× Ea, and applying the usual Fresnel approximations, show that the
diffracted field calculated by Eq. (17.4.1) is is still given by Eqs. (17.14.22)–(17.14.24), except
that the factor cosθ1+ cosθ2 is replaced now by 2 cosθ2, and that the asymptotic field and
edge-diffraction coefficient are:

E = E0
e−jkl2√
l2
Dedge , Dedge = (1− j)2 cosθ2

4
√
πk(sinθ1 + sinθ2)

Show that this expression agrees with the exact Sommerfeld solution (17.15.26) at normal
incidence and near the forward diffracted direction.

17.12 A uniform plane wave, E(x, z)= E0e−jk(x sinθ0+z cosθ0), is incident obliquely on a lens at an
angle θ0 with the z axis, as shown in the figure below.

Using similar methods as for Fig. 17.18.5, show that after passing through the lens, the wave
will converge onto the shifted focal point with coordinates z = F and x = F sinθ0.

Conversely, consider a point source of a spherical wave starting at the point z = −F and
x = F sinθ0. Show that upon passage through the lens, the spherical wave will be converted
into the obliquely moving plane wave E(x, z)= E1e−jk(x sinθ0+z cosθ0). What is E1?

17.13 Consider the three lens configurations shown below. They are special cases of Figs. 17.18.2
and 17.18.3, with appropriate choices for the input and output aperture planes a and b.
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Working with Eqs. (17.18.13) and (17.18.15), show that the transfer functions h(r⊥, r⊥′) are
given as follows for the three cases:

h(r⊥, r⊥′)= e−2jkFejk(r⊥·r
′⊥)/F , h(r⊥, r⊥′)= jk

2πF
e−jkFejk(r⊥·r

′⊥)/F

h(r⊥, r⊥′)= −F1

F2
δ
(

r⊥ + F1

F2
r⊥
)

Show that the first two cases perform a Fourier transformation as in Eq. (17.18.21), but
without the quadratic phase factors. Show that the third case, performs a scaling of the
input with a magnification factor M = −F2/F1


