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Pulse Propagation in Dispersive Media

In this chapter, we examine some aspects of pulse propagation in dispersive media and
the role played by various wave velocity definitions, such as phase, group, and front
velocities. We discuss group velocity dispersion, pulse spreading, chirping, and disper-
sion compensation, and look at some slow, fast, and negative group velocity examples.
We also present a short introduction to chirp radar and pulse compression, elaborating
on the similarities to dispersion compensation. The similarities to Fresnel diffraction
and Fourier optics are discussed in Sec. 17.18. The chapter ends with a guide to the
literature in these diverse topics.

3.1 Propagation Filter

As we saw in the previous chapter, a monochromatic plane wave moving forward along
the z-direction has an electric field E(z)= E(0)e−jkz, where E(z) stands for either the x
or the y component. We assume a homogeneous isotropic non-magnetic medium (μ =
μ0) with an effective permittivity ε(ω); therefore, k is the frequency-dependent and
possibly complex-valued wavenumber defined by k(ω)= ω

√
ε(ω)μ0. To emphasize

the dependence on the frequency ω, we rewrite the propagated field as:†

Ê(z,ω)= e−jkzÊ(0,ω) (3.1.1)

Its complete space-time dependence will be:

ejωtÊ(z,ω)= ej(ωt−kz)Ê(0,ω) (3.1.2)

A wave packet or pulse can be made up by adding different frequency components,
that is, by the inverse Fourier transform:

E(z, t)= 1

2π

∫∞
−∞
ej(ωt−kz)Ê(0,ω)dω (3.1.3)

†where the hat denotes Fourier transformation.
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Setting z = 0, we recognize Ê(0,ω) to be the Fourier transform of the initial wave-
form E(0, t), that is,

E(0, t)= 1

2π

∫∞
−∞
ejωtÊ(0,ω)dω � Ê(0,ω)=

∫∞
−∞
e−jωtE(0, t)dt (3.1.4)

The multiplicative form of Eq. (3.1.1) allows us to think of the propagated field as
the output of a linear system, the propagation filter, whose frequency response is

H(z,ω)= e−jk(ω)z (3.1.5)

Indeed, for a linear time-invariant system with impulse response h(t) and corre-
sponding frequency response H(ω), the input/output relationship can be expressed
multiplicatively in the frequency domain or convolutionally in the time domain:

Êout(ω)= H(ω)Êin(ω)

Eout(t)=
∫∞
−∞
h(t − t′)Ein(t′)dt′

For the propagator frequency response H(z,ω)= e−jk(ω)z, we obtain the corre-
sponding impulse response:

h(z, t)= 1

2π

∫∞
−∞
ejωtH(z,ω)dω = 1

2π

∫∞
−∞
ej(ωt−kz)dω (3.1.6)

Alternatively, Eq. (3.1.6) follows from (3.1.3) by setting Ê(0,ω)= 1, corresponding
to an impulsive input E(0, t)= δ(t). Thus, Eq. (3.1.3) may be expressed in the time
domain in the convolutional form:

E(z, t)=
∫∞
−∞
h(z, t − t′)E(0, t′)dt′ (3.1.7)

Example 3.1.1: For propagation in a dispersionless medium with frequency-independent per-
mittivity, such as the vacuum, we have k =ω/c, where c = 1/√με. Therefore,

H(z,ω)= e−jk(ω)z = e−jωz/c = pure delay by z/c

h(z, t)= 1

2π

∫ ∞
−∞
ej(ωt−kz)dω = 1

2π

∫ ∞
−∞
ejω(t−z/c)dω = δ(t − z/c)

and Eq. (3.1.7) gives E(z, t)= E(0, t − z/c), in agreement with the results of Sec. 2.1. ��

The reality of h(z, t) implies the hermitian property,H(z,−ω)∗= H(z,ω), for the
frequency response, which is equivalent to the anti-hermitian property for the wave-
number, k(−ω)∗= −k(ω).
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3.2 Front Velocity and Causality

For a general linear system H(ω)= |H(ω)|e−jφ(ω), one has the standard concepts of
phase delay, group delay, and signal-front delay [155] defined in terms of the system’s
phase-delay response, that is, the negative of its phase response, φ(ω)= −ArgH(ω):

tp = φ(ω)
ω

, tg = dφ(ω)
dω

, tf = lim
ω→∞

φ(ω)
ω

(3.2.1)

The significance of the signal-front delay tf for the causality of a linear system is
that the impulse response vanishes, h(t)= 0, for t < tf , which implies that if the input
begins at time t = t0, then the output will begin at t = t0 + tf :

Ein(t)= 0 for t < t0 ⇒ Eout(t)= 0 for t < t0 + tf (3.2.2)

To apply these concepts to the propagator filter, we write k(ω) in terms of its real
and imaginary parts, k(ω)= β(ω)−jα(ω), so that

H(z,ω)= e−jk(ω)z = e−α(ω)ze−jβ(ω)z ⇒ φ(ω)= β(ω)z (3.2.3)

Then, the definitions (3.2.1) lead naturally to the concepts of phase velocity, group
velocity, and signal-front velocity, defined through:

tp = z
vp
, tg = z

vg
, tf = z

vf
(3.2.4)

For example, tg = dφ/dω = (dβ/dω)z = z/vg, and similarly for the other ones,
resulting in the definitions:

vp = ω
β(ω)

, vg = dω
dβ

, vf = lim
ω→∞

ω
β(ω)

(3.2.5)

The expressions for the phase and group velocities agree with those of Sec. 1.11.
Under the reasonable assumption that ε(ω)→ ε0 as ω → ∞, which is justified on the
basis of the permittivity model of Eq. (1.9.13), we have k(ω)=ω√ε(ω)μ0 →ω√ε0μ0 =
ω/c, where c is the speed of light in vacuum. Therefore, the signal front velocity and
front delay are:

vf = lim
ω→∞

ω
β(ω)

= lim
ω→∞

ω
ω/c

= c ⇒ tf = z
c

(3.2.6)

Thus, we expect that the impulse response h(z, t) of the propagation medium would
satisfy the causality condition:

h(z, t)= 0 , for t < tf = z
c

(3.2.7)

We show this below. More generally, if the input pulse at z = 0 vanishes for t < t0,
the propagated pulse to distance z will vanish for t < t0 + z/c. This is the statement
of relativistic causality, that is, if the input signal has a sharp, discontinuous, front at
some time t0, then that front cannot move faster than the speed of light in vacuum and
cannot reach the point z faster than z/c seconds later. Mathematically,

E(0, t)= 0 for t < t0 ⇒ E(z, t)= 0 for t < t0 + zc (3.2.8)
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Fig. 3.2.1 Causal pulse propagation, but with superluminal group velocity (vg > c).

Fig. 3.2.1 depicts this property. Sommerfeld and Brillouin [154,1111] originally
showed this property for a causal sinusoidal input, that is, E(0, t)= ejω0tu(t).

Group velocity describes the speed of the peak of the envelope of a signal and is a
concept that applies only to narrow-band pulses. As mentioned in Sec. 1.11, it is possi-
ble that if this narrow frequency band is concentrated in the vicinity of an anomalous
dispersion region, that is, near an absorption peak, the corresponding group velocity
will exceed the speed of light in vacuum, vg > c, or even become negative depending on
the value of the negative slope of the refractive index dnr/dω < 0.

Conventional wisdom has it that the condition vg > c is not at odds with relativity
theory because the strong absorption near the resonance peak causes severe distortion
and attenuation of the signal peak and the group velocity loses its meaning. However, in
recent years it has been shown theoretically and experimentally [228,229,247] that the
group velocity can retain its meaning as representing the speed of the peak even if vg is
superluminal or negative. Yet, relativistic causality is preserved because the signal front
travels with the speed of light. It is the sharp discontinuous front of a signal that may
convey information, not necessarily its peak. Because the pulse undergoes continuous
reshaping as it propagates, the front cannot be overtaken by the faster moving peak.

This is explained pictorially in Fig. 3.2.1 which depicts such a case where vg > c,
and therefore, tg < tf . For comparison, the actual field E(z, t) is shown together with
the input pulse as if the latter had been traveling in vacuum, E(0, t−z/c), reaching the
point z with a delay of tf = z/c. The peak of the pulse, traveling with speed vg, gets
delayed by the group delay tg when it arrives at distance z. Because tg < tf , the peak of
E(z, t) shifts forward in time and occurs earlier than it would if the pulse were traveling
in vacuum. Such peak shifting is a consequence of the “filtering” or “rephasing” taking
place due to the propagator filter’s frequency response e−jk(ω)z.

The causality conditions (3.2.7) and (3.2.8) imply that the value of the propagated
field E(z, t) at some time instant t > t0 + z/c is determined only by those values of
the input pulse E(0, t′) that are z/c seconds earlier, that is, for t0 ≤ t′ ≤ t − z/c. This
follows from the convolutional equation (3.1.7): the factor h(z, t − t′) requires that
t − t′ ≥ z/c, the factor E(0, t′) requires t′ ≥ t0, yielding t0 ≤ t′ ≤ t − z/c. Thus,

E(z, t)=
∫ t−z/c
t0

h(z, t − t′)E(0, t′)dt′ , for t > t0 + z/c (3.2.9)
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For example, the value of E(z, t) at t = t1 + tf = t1 + z/c is given by:

E(z, t1 + tf )=
∫ t1
t0
h(z, t1 + tf − t′)E(0, t′)dt′

Thus, as shown in Fig. 3.2.2, the shaded portion of the input E(0, t′) over the time
interval t0 ≤ t′ ≤ t1 determines causally the shaded portion of the propagated signal
E(z, t) over the interval t0 + tf ≤ t ≤ t1 + tf . The peaks, on the other hand, are not
causally related. Indeed, the interval [t0, t1] of the input does not include the peak,
whereas the interval [t0 + tf , t1 + tf ] of the output does include the (shifted) peak.

Fig. 3.2.2 Shaded areas show causally related portions of input and propagated signals.

Next, we provide a justification of Eq. (3.2.8). The condition E(0, t)= 0 for t < t0,
implies that its Fourier transform is:

Ê(0,ω)=
∫∞
t0
e−jωtE(0, t)dt ⇒ ejωt0 Ê(0,ω)=

∫∞
0
e−jωtE(0, t + t0)dt (3.2.10)

where the latter equation was obtained by the change of integration variable from t to
t+t0. It follows now that ejωt0 Ê(0,ω) is analytically continuable into the lower-halfω-
plane. Indeed, the replacement e−jωt by e−j(ω−jσ)t = e−σte−jωt with σ > 0 and t > 0,
improves the convergence of the time integral in (3.2.10). We may write now Eq. (3.1.3)
in the following form:

E(z, t)= 1

2π

∫∞
−∞
ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω (3.2.11)

and assume that t < t0 + z/c. A consequence of the permittivity model (1.9.13) is that
the wavenumber k(ω) has singularities only in the upper-half ω-plane and is analytic
in the lower half. For example, for the single-resonance case, we have:

ε(ω)= ε0

[
1+ ω2

p

ω2
0 −ω2 + jωγ

]
⇒

zeros = jγ
2
±
√
ω2

0 +ω2
p − γ

2

4

poles = jγ
2
±
√
ω2

0 −
γ2

4

Thus, the integrand of Eq. (3.2.11) is analytic in the lower-half ω-plane and we
may replace the integration path along the real axis by the lower semi-circular counter-
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clockwise path CR at a very large radius R, as shown below:

E(z, t) = 1

2π

∫∞
−∞
ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω

= lim
R→∞

1

2π

∫
CR
ej(ωt−ωt0−kz) ejωt0 Ê(0,ω)dω

But for large ω, we may replace k(ω)=ω/c. Thus,

E(z, t)= lim
R→∞

1

2π

∫
CR
ejω(t−t0−z/c) ejωt0 Ê(0,ω)dω

Because t − t0 − z/c < 0, and under the mild assumption that ejωt0 Ê(0,ω)→ 0 for
|ω| = R → ∞ in the lower-half plane, it follows from the Jordan lemma that the above
integral will be zero. Therefore, E(z, t)= 0 for t < t0 + z/c.

As an example, consider the signal E(0, t)= e−a(t−t0)ejω0(t−t0)u(t − t0), that is, a
delayed exponentially decaying (a > 0) causal sinusoid. Its Fourier transform is

Ê(0,ω)= e−jωt0
j(ω−ω0 − ja) ⇒ ejωt0 Ê(0,ω)= 1

j(ω−ω0 − ja)
which is analytic in the lower half-plane and converges to zero for |ω| → ∞.

The proof of Eq. (3.2.7) is similar. Because of the analyticity of k(ω), the integration
path in Eq. (3.1.6) can again be replaced by CR, and k(ω) replaced by ω/c:

h(z, t)= lim
R→∞

1

2π

∫
CR
ejω(t−z/c)dω , for t < z/c

This integral can be done exactly,† and leads to a standard representation of the
delta function:

h(z, t)= lim
R→∞

sin
(
R(t − z/c))
π(t − z/c) = δ(t − z/c)

which vanishes since we assumed that t < z/c. For t > z/c, the contour in (3.1.6) can be
closed in the upper half-plane, but its evaluation requires knowledge of the particular
singularities of k(ω).

3.3 Exact Impulse Response Examples

Some exactly solvable examples are given in [161]. They are all based on the following
Fourier transform pair, which can be found in [156]:‡

H(z,ω)= e−jk(ω)z = e−tf
√
jω+a+b

√
jω+a−b

h(z, t)= δ(t − tf )e−atf +
I1
(
b
√
t2 − t2f

)
√
t2 − t2f

btf e−at u(t − tf )
(3.3.1)

†set ω = Rejθ, dω = jRejθdθ, and integrate over −π ≤ θ ≤ 0
‡see the pair 863.1 on p. 110 of [156].
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where I1(x) is the modified Bessel function of the first kind of order one, and tf = z/c
is the front delay. The unit step u(t− tf ) enforces the causality condition (3.2.7). From
the expression of H(z,ω), we identify the corresponding wavenumber:

k(ω)= −j
c

√
jω+ a+ b

√
jω+ a− b (3.3.2)

The following physical examples are described by appropriate choices of the param-
eters a,b, c in Eq. (3.3.2):

1. a = 0 , b = 0 − propagation in vacuum or dielectric
2. a > 0 , b = 0 − weakly conducting dielectric
3. a = b > 0 − medium with finite conductivity
4. a = 0 , b = jωp − lossless plasma
5. a = 0 , b = jωc − hollow metallic waveguide
6. a+ b = R′/L′ , a− b = G′/C′ − lossy transmission line

The anti-hermitian property k(−ω)∗= −k(ω) is satisfied in two cases: when the
parameters a,b are both real, or, when a is real and b imaginary.

In case 1, we have k =ω/c and h(z, t)= δ(t− tf )= δ(t− z/c). Setting a = cα > 0
and b = 0, we find for case 2:

k = ω− ja
c

= ω
c
− jα (3.3.3)

which corresponds to a medium with a constant attenuation coefficient α = a/c and
a propagation constant β = ω/c, as was the case of a weakly conducting dielectric of
Sec. 2.7. In this case c is the speed of light in the dielectric, i.e. c = 1/√με and a is
related to the conductivity σ by a = cα = σ/2ε. The medium impulse response is:

h(z, t)= δ(t − tf )e−atf = δ(t − z/c)e−αz

Eq. (3.1.7) then implies that an input signal will travel at speed c while attenuating
with distance:

E(z, t)= e−αzE(0, t − z/c)
Case 3 describes a medium with frequency-independent permittivity and conductiv-

ity ε,σ with the parameters a = b = σ/2ε and c = 1/√μ0ε. Eq. (3.3.2) becomes:

k = ω
c

√
1− j σ

ωε
(3.3.4)

and the impulse response is:

h(z, t)= δ(t − z/c)e−az/c +
I1
(
a
√
t2 − (z/c)2

)
√
t2 − (z/c)2

az
c
e−at u(t − z/c) (3.3.5)

A plot of h(z, t) for t > tf is shown below.
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For large t, h(z, t) is not exponentially decaying, but falls like 1/t3/2. Using the

large-x asymptotic form I1(x)→ ex/
√

2πx, and setting
√
t2 − t2f → t for t� tf , we find

h(z, t)→ eat

t
√

2πat
atf e−at = atf

t
√

2πat
, t� tf

Case 4 has parameters a = 0 and b = jωp and describes propagation in a plasma,
where ωp is the plasma frequency. Eq. (3.3.2) reduces to Eq. (1.9.39):

k = 1

c

√
ω2 −ω2

p

To include evanescent waves (havingω <ωp), Eq. (3.3.2) may be written in the more
precise form that satisfies the required anti-hermitian property k(−ω)∗= −k(ω):

k(ω)= 1

c

⎧⎪⎨
⎪⎩

sign(ω)
√
ω2 −ω2

p , if |ω| ≥ωp

−j
√
ω2
p −ω2 , if |ω| ≤ωp

(3.3.6)

When |ω| ≤ωp, the wave is evanescent in the sense that it attenuates exponentially
with distance:

e−jkz = e−z
√
ω2
p−ω2/c

For numerical evaluation using MATLAB, it proves convenient to leave k(ω) in the
form of Eq. (3.3.2), that is,

k(ω)= −j
c

√
j(ω+ωp)

√
j(ω−ωp)

which evaluates correctly according to Eq. (3.3.6) using MATLAB’s rules for computing
square roots (e.g.,

√±j = e±jπ/4).
Because b is imaginary, we can use the property I1(jx)= jJ1(x), where J1(x) is the

ordinary Bessel function. Thus, setting a = 0 and b = jωp in Eq. (3.3.1), we find:

h(z, t)= δ(t − tf )−
J1

(
ωp

√
t2 − t2f

)
√
t2 − t2f

ωptf u(t − tf ) (3.3.7)

A plot of h(z, t) for t > tf is shown below.
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The propagated output E(z, t) due to a causal input, E(0, t)= E(0, t)u(t), is ob-
tained by convolution, where we must impose the conditions t′ ≥ tf and t − t′ ≥ 0:

E(z, t)=
∫∞
−∞
h(z, t′)E(0, t − t′)dt′

which for t ≥ tf leads to:

E(z, t)= E(0, t − tf )−
∫ t
tf

J1

(
ωp

√
t′2 − t2f

)
√
t′2 − t2f

ωptf E(0, t − t′)dt′ (3.3.8)

We shall use Eq. (3.3.8) in the next section to illustrate the transient and steady-
state response of a propagation medium such as a plasma or a waveguide. The large-t
behavior of h(z, t) is obtained from the asymptotic form:

J1(x)→
√

2

πx
cos

(
x− 3π

4

)
, x� 1

which leads to

h(z, t)→ −
√

2ωp tf√
πt3/2

cos
(
ωpt − 3π

4

)
, t� tf (3.3.9)

Case 5 is the same as case 4, but describes propagation in an air-filled hollow metallic
waveguide with cutoff frequencyωc. We will see in Chap. 9 that the dispersion relation-
ship (3.3.6) is a consequence of the boundary conditions on the waveguide walls, and
therefore, it is referred to as waveguide dispersion, as opposed to material dispersion
arising from a frequency-dependent permittivity ε(ω).

Case 6 describes a lossy transmission line (see Sec. 10.6) with distributed (that is, per
unit length) inductance L′, capacitance C′, series resistance R′, and shunt conductance
G′. This case reduces to case 3 if G′ = 0. The corresponding propagation speed is
c = 1/

√
L′C′. Theω–k dispersion relationship can be written in the form of Eq. (10.6.5):

k = −j
√
(R′ + jωL′)(G′ + jωC′) =ω

√
L′C′

√(
1− j R

′

ωL′

)(
1− j G

′

ωC′

)

3.4 Transient and Steady-State Behavior

The frequency response e−jk(ω)z is the Fourier transform of h(z, t), but because of the
causality condition h(z, t)= 0 for t < z/c, the time-integration in this Fourier transform
can be restricted to the interval z/c < t <∞, that is,

e−jk(ω)z =
∫∞
z/c
e−jωth(z, t)dt (3.4.1)
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We mention, parenthetically, that Eq. (3.4.1), which incorporates the causality con-
dition of h(z, t), can be used to derive the lower half-plane analyticity of k(ω) and of
the corresponding complex refractive index n(ω) defined through k(ω)= ωn(ω)/c.
The analyticity properties of n(ω) can then be used to derive the Kramers-Kronig dis-
persion relations satisfied by n(ω) itself [159], as opposed to those satisfied by the
susceptibility χ(ω) that were discussed in Sec. 1.10.

When a causal sinusoidal input is applied to the linear system h(z, t), we expect the
system to exhibit an initial transient behavior followed by the usual sinusoidal steady-
state response. Indeed, applying the initial pulse E(0, t)= ejω0tu(t), we obtain from
the system’s convolutional equation:

E(z, t)=
∫ t
z/c
h(z, t′)E(0, t − t′)dt′ =

∫ t
z/c
h(z, t′)ejω0(t−t′)dt′

where the restricted limits of integration follow from the conditions t′ ≥ z/c and t−t′ ≥
0 as required by the arguments of the functions h(z, t′) and E(0, t − t′). Thus, for
t ≥ z/c, the propagated field takes the form:

E(z, t)= ejω0t
∫ t
z/c
e−jω0t′h(z, t′)dt′ (3.4.2)

In the steady-state limit, t → ∞, the above integral tends to the frequency response
(3.4.1) evaluated at ω =ω0, resulting in the standard sinusoidal response:

ejω0t
∫ t
z/c
e−jω0t′h(z, t′)dt′ → ejω0t

∫∞
z/c
e−jω0t′h(z, t′)dt′ = H(z,ω0)ejω0t , or,

Esteady(z, t)= ejω0t−jk(ω0)z , for t� z/c (3.4.3)

Thus, the field E(z, t) eventually evolves into an ordinary plane wave at frequency
ω0 and wavenumber k(ω0)= β(ω0)−jα(ω0). The initial transients are given by the
exact equation (3.4.2) and depend on the particular form of k(ω). They are generally
referred to as “precursors” or “forerunners” and were originally studied by Sommerfeld
and Brillouin [154,1111] for the case of a single-resonance Lorentz permittivity model.

It is beyond the scope of this book to study the precursors of the Lorentz model.
However, we may use the exactly solvable model for a plasma or waveguide given in
Eq. (3.3.7) and numerically integrate (3.4.2) to illustrate the transient and steady-state
behavior.

Fig. 3.4.1 shows on the left graph the input sinusoid (dotted line) and the steady-
state sinusoid (3.4.3) with k0 computed from (3.3.6). The input and the steady output
differ by the phase shift −k0z. The graph on the right shows the causal output for
t ≥ tf computed using Eq. (3.3.8) with the input E(0, t)= sin(ω0t)u(t). During the
initial transient period the output signal builds up to its steady-state form. The steady
form of the left graph was not superimposed on the exact output because the two are
virtually indistinguishable for large t. The graph units were arbitrary and we chose the
following numerical values of the parameters:

c = 1 ωp = 1 , ω0 = 3 , tf = z = 10

The following MATLAB code illustrates the computation of the exact and steady-state
output signals:
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0 10 20 30 40

−1

0

1

t

input and steady− state output

tf

0 10 20 30 40

−1

0

1

t

exact output

tf

Fig. 3.4.1 Transient and steady-state sinusoidal response.

wp = 1; w0 = 3; tf = 10;
k0 = -j * sqrt(j*(w0+wp)) * sqrt(j*(w0-wp)); % equivalent to Eq. (3.3.6)

t = linspace(0,40, 401);

N = 15; K = 20; % use N-point Gaussian quadrature, dividing [tf , t] into K subintervals

for i=1:length(t),
if t(i)<tf,

Ez(i) = 0;
Es(i) = 0;

else
[w,x] = quadrs(linspace(tf,t(i),K), N); % quadrature weights and points

h = - wp^2 * tf * J1over(wp*sqrt(x.^2 - tf^2)) .* exp(j*w0*(t(i)-x));
Ez(i) = exp(j*w0*(t(i)-tf)) + w’*h; % exact output

Es(i) = exp(j*w0*t(i)-j*k0*tf); % steady-state

end
end

es = imag(Es); ez = imag(Ez); % input is E(0, t) = sin(ω0t) u(t)

figure; plot(t,es); figure; plot(t,ez);

The code uses the function quadrs (see Sec. 18.10 and Appendix I) to compute the
integral over the interval [tf , t], dividing this interval into K subintervals and using an
N-point Gauss-Legendre quadrature method on each subinterval.

We wrote a function J1over to implement the function J1(x)/x. The function uses
the power series expansion, J1(x)/x = 0.5(1 − x2/8 + x4/192), for small x, and the
built-in MATLAB function besselj for larger x:

function y = J1over(x)

y = zeros(size(x)); % y has the same size as x

xmin = 1e-4;

i = find(abs(x) < xmin);
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y(i) = 0.5 * (1 - x(i).^2 / 8 + x(i).^4 / 192);

i = find(abs(x) >= xmin);
y(i) = besselj(1, x(i)) ./ x(i);
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Fig. 3.4.2 Transient and steady-state response for evanescent sinusoids.

Fig. 3.4.2 illustrates an evanescent wave withω0 < ωp. In this case the wavenumber

becomes pure imaginary, k0 = −jα0 = −j
√
ω2
p −ω2

0/c, leading to an attenuated steady-
state waveform:

Esteady(z, t)= ejω0t−jk0z = ejω0te−α0z , t� z
c

The following numerical values were used:

c = 1 ωp = 1 , ω0 = 0.9 , tf = z = 5

resulting in the imaginary wavenumber and attenuation amplitude:

k0 = −jα0 = −0.4359j , H0 = e−jk0z = e−αoz = 0.1131

We chose a smaller value of z in order to get a reasonable value for the attenuated
signal for display purposes. The left graph in Fig. 3.4.2 shows the input and the steady-
state output signals. The right graph shows the exact output computed by the same
MATLAB code given above. Again, we note that for large t (here, t > 80), the exact
output approaches the steady one.

Finally, in Fig. 3.4.3 we illustrate the input-on and input-off transients for an input
rectangular pulse of duration td, and for a causal gaussian pulse, that is,

E(0, t)= sin(ω0t)
[
u(t)−u(t − td)

]
, E(0, t)= ejω0t exp

[
−(t − tc)

2

2τ2
0

]
u(t)

The input-off transients for the rectangular pulse are due to the oscillating and de-
caying tail of the impulse response h(z, t) given in (3.3.9). The following values of the
parameters were used:

c = 1 ωp = 1 , ω0 = 3 , tf = z = 30 , td = 20 , tc = τ0 = 5
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Fig. 3.4.3 Rectangular and gaussian pulse propagation.

The MATLAB code for the rectangular pulse case is essentially the same as above
except that it uses the function upulse to enforce the finite pulse duration:

wp = 1; w0 = 3; tf = 30; td = 20; N = 15; K = 20;
k0 = -j * sqrt(j*(w0+wp)) * sqrt(j*(w0-wp));

t = linspace(0,80,801);

E0 = exp(j*w0*t) .* upulse(t,td);

for i=1:length(t),
if t(i)<tf,
Ez(i) = 0;

else
[w,x] = quadrs(linspace(tf,t(i),K), N);
h = - wp^2 * tf * J1over(wp*sqrt(x.^2-tf^2)) .* ...

exp(j*w0*(t(i)-x)) .* upulse(t(i)-x,td);
Ez(i) = exp(j*w0*(t(i)-tf)).*upulse(t(i)-tf,td) + w’*h;

end
end

e0 = imag(E0); ez = imag(Ez);

plot(t,ez,’-’, t,e0,’-’);

3.5 Pulse Propagation and Group Velocity

In this section, we show that the peak of a pulse travels with the group velocity. The con-
cept of group velocity is associated with narrow-band pulses whose spectrum Ê(0,ω)
is narrowly concentrated in the neighborhood of some frequency, say, ω0, with an ef-
fective frequency band |ω−ω0| ≤ Δω, where Δωω0, as depicted in Fig. 3.5.1.

Such spectrum can be made up by translating a low-frequency spectrum, say F̂(0,ω),
toω0, that is, Ê(0,ω)= F̂(0,ω−ω0). From the modulation property of Fourier trans-
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Fig. 3.5.1 High-frequency sinusoid with slowly-varying envelope.

forms, it follows that the corresponding time-domain signal E(0, t) will be:

Ê(0,ω)= F̂(0,ω−ω0) ⇒ E(0, t)= ejω0tF(0, t) (3.5.1)

that is, a sinusoidal carrier modulated by a slowly varying envelope F(0, t), where

F(0, t)= 1

2π

∫∞
−∞
ejω

′tF̂(0,ω′)dω′ = 1

2π

∫∞
−∞
ej(ω−ω0)tF̂(0,ω−ω0)dω (3.5.2)

Because the integral overω′ =ω−ω0 is effectively restricted over the low-frequency
band |ω′| ≤ Δω, the resulting envelope F(0, t) will be slowly-varying (relative to the
period 2π/ω0 of the carrier.) If this pulse is launched into a dispersive medium with
wavenumber k(ω), the propagated pulse to distance z will be given by:

E(z, t)= 1

2π

∫∞
−∞
ej(ωt−kz)F̂(0,ω−ω0)dω (3.5.3)

Defining k0 = k(ω0), we may rewrite E(z, t) in the form of a modulated plane wave:

E(z, t)= ej(ω0t−k0z)F(z, t) (3.5.4)

where the propagated envelope F(z, t) is given by

F(z, t)= 1

2π

∫∞
−∞
ej(ω−ω0)t−j(k−k0)z F̂(0,ω−ω0)dω (3.5.5)

This can also be written in a convolutional form by defining the envelope impulse
response function g(z, t) in terms of the propagator impulse response h(z, t):

h(z, t)= ej(ω0t−k0z)g(z, t) (3.5.6)

so that

g(z, t)= 1

2π

∫∞
−∞
ej(ω−ω0)t−j(k−k0)z dω (3.5.7)

Then, the propagated envelope can be obtained by the convolutional operation:

F(z, t)=
∫∞
−∞
g(z, t′)F(0, t − t′)dt′ (3.5.8)
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Because F̂(0,ω −ω0) restricts the effective range of integration in Eq. (3.5.5) to a
narrow band aboutω0, one can expand k(ω) to a Taylor series aboutω0 and keep only
the first few terms:

k(ω)= k0 + k′0(ω−ω0)+1

2
k′′0 (ω−ω0)2+· · · (3.5.9)

where

k0 = k(ω0) , k′0 =
dk
dω

∣∣∣∣
ω0

, k′′0 =
d2k
dω2

∣∣∣∣∣
ω0

(3.5.10)

If k(ω) is real, we recognize k′0 as the inverse of the group velocity at frequency ω0:

k′0 =
dk
dω

∣∣∣∣
ω0

= 1

vg
(3.5.11)

If k′0 is complex-valued, k′0 = β′0 − jα′0, then its real part determines the group velocity
through β′0 = 1/vg, or, vg = 1/β′0. The second derivative k′′0 is referred to as the
“dispersion coefficient” and is responsible for the spreading and chirping of the wave
packet, as we see below.

Keeping up to the quadratic term in the quantity k(ω)−k0 in (3.5.5), and changing
integration variables to ω′ =ω−ω0, we obtain the approximation:

F(z, t)= 1

2π

∫∞
−∞
ejω

′(t−k′0z)−jk′′0 zω′2/2F̂(0,ω′)dω′ (3.5.12)

In the linear approximation, we may keep k′0 and ignore the k′′0 term, and in the
quadratic approximation, we keep both k′0 and k′′0 . For the linear case, we have by
comparing with Eq. (3.5.2):

F(z, t)= 1

2π

∫∞
−∞
ejω

′(t−k′0z)F̂(0,ω′)dω′ = F(0, t − k′0z) (3.5.13)

Thus, assuming that k′0 is real so that k′0 = 1/vg, Eq. (3.5.13) implies that the initial
envelope F(0, t) is moving as whole with the group velocity vg. The field E(z, t) is
obtained by modulating the high-frequency plane wave ej(ω0t−k0z) with this envelope:

E(z, t)= ej(ω0t−k0z) F(0, t − z/vg) (3.5.14)

Every point on the envelope travels at the same speed vg, that is, its shape remains
unchanged as it propagates, as shown in Fig. 3.5.2. The high-frequency carrier suffers a
phase-shift given by −k0z.

Similar approximations can be introduced in (3.5.7) anticipating that (3.5.8) will be
applied only to narrowband input envelope signals F(0, t):

g(z, t)= 1

2π

∫∞
−∞
ejω

′(t−k′0z)−jk′′0 zω′2/2 dω′ (3.5.15)

This integral can be done exactly, and leads to the following expressions in the linear
and quadratic approximation cases (assuming that k′0, k′′0 are real):

linear: g(z, t)= δ(t − k′0z)

quadratic: g(z, t)= 1√
2πjk′′0 z

exp

[
−(t − k

′
0z)2

2jk′′0 z

]
(3.5.16)
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Fig. 3.5.2 Pulse envelope propagates with velocity vg remaining unchanged in shape.

The corresponding frequency responses follow from Eq. (3.5.15), replacing ω′ by ω:

linear: G(z,ω)= e−jk′0zω
quadratic: G(z,ω)= e−jk′0zωe−jk′′0 zω2/2 (3.5.17)

The linear case is obtained from the quadratic one in the limit k′′0 → 0. We note that
the integral of Eq. (3.5.15), as well as the gaussian pulse examples that we consider later,
are special cases of the following Fourier integral:

1

2π

∫∞
−∞
ejωt−(a+jb)ω

2/2 dω = 1√
2π(a+ jb) exp

[
− t2

2(a+ jb)

]
(3.5.18)

where a,b are real, with the restriction that a ≥ 0.† The integral for g(z, t) corresponds
to the case a = 0 and b = k′′0 z. Using (3.5.16) into (3.5.8), we obtain Eq. (3.5.13) in the
linear case and the following convolutional expression in the quadratic one:

linear: F(z, t)= F(0, t − k′0z)

quadratic: F(z, t)=
∫∞
−∞

1√
2πjk′′0 z

exp

[
−(t

′ − k′0z)2

2jk′′0 z

]
F(0, t − t′)dt′ (3.5.19)

and in the frequency domain:

linear: F̂(z,ω)= G(z,ω)F̂(0,ω)= e−jk′0zωF̂(0,ω)
quadratic: F̂(z,ω)= G(z,ω)F̂(0,ω)= e−jk′0zω−jk′′0 zω2/2F̂(0,ω)

(3.5.20)

3.6 Group Velocity Dispersion and Pulse Spreading

In the linear approximation, the envelope propagates with the group velocity vg, re-
maining unchanged in shape. But in the quadratic approximation, as a consequence of
Eq. (3.5.19), it spreads and reduces in amplitude with distance z, and it chirps. To see
this, consider a gaussian input pulse of effective width τ0:

F(0, t)= exp

[
− t2

2τ2
0

]
⇒ E(0, t)= ejω0tF(0, t)= ejω0t exp

[
− t2

2τ2
0

]
(3.6.1)

†Given the polar form a+ jb = Rejθ, we must choose the square root
√
a+ jb = R1/2ejθ/2 .
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with Fourier transforms F̂(0,ω) and Ê(0,ω)= F̂(0,ω−ω0):

F̂(0,ω)=
√

2πτ2
0 e−τ

2
0ω2/2 ⇒ Ê(0,ω)=

√
2πτ2

0 e−τ
2
0(ω−ω0)2/2 (3.6.2)

with an effective width Δω = 1/τ0. Thus, the condition Δω  ω0 requires that
τ0ω0 � 1, that is, an envelope with a long duration relative to the carrier’s period.

The propagated envelope F(z, t) can be determined either from Eq. (3.5.19) or from
(3.5.20). Using the latter, we have:

F̂(z,ω)=
√

2πτ2
0 e−jk

′
0zω−jk′′0 zω2/2e−τ

2
0ω2/2 =

√
2πτ2

0 e−jk
′
0zωe−(τ

2
0+jk′′0 z)ω2/2 (3.6.3)

The Fourier integral (3.5.18), then, gives the propagated envelope in the time domain:

F(z, t)=
√√√√ τ2

0

τ2
0 + jk′′0 z

exp

[
− (t − k′0z)2

2(τ2
0 + jk′′0 z)

]
(3.6.4)

Thus, effectively we have the replacementτ2
0 → τ2

0+jk′′0 z. Assuming for the moment
that k′0 and k′′0 are real, we find for the magnitude of the propagated pulse:

|F(z, t)| =
[

τ4
0

τ4
0 + (k′′0 z)2

]1/4

exp

[
− (t − k′0z)2 τ2

0

2
(
τ4

0 + (k′′0 z)2
)
]

(3.6.5)

where we used the property |τ2
0 + jk′′0 z| =

√
τ4

0 + (k′′0 z)2. The effective width is deter-
mined from the argument of the exponent to be:

τ2 = τ4
0 + (k′′0 z)2

τ2
0

⇒ τ =
⎡
⎣τ2

0 +
(
k′′0 z
τ0

)2
⎤
⎦

1/2

(3.6.6)

Therefore, the pulse width increases with distance z. Also, the amplitude of the
pulse decreases with distance, as measured for example at the peak maximum:

|F|max =
[

τ4
0

τ4
0 + (k′′0 z)2

]1/4

The peak maximum occurs at the group delay t = k′0z, and hence it is moving at the
group velocity vg = 1/k′0.

The effect of pulse spreading and amplitude reduction due to the term k′′0 is referred
to as group velocity dispersion or chromatic dispersion. Fig. 3.6.1 shows the amplitude
decrease and spreading of the pulse with distance, as well as the chirping effect (to be
discussed in the next section.)

Because the frequency width is Δω = 1/τ0, we may write the excess time spread
Δτ = k′′0 z/τ0 in the formΔτ = k′′0 zΔω. This can be understood in terms of the change
in the group delay. It follows from tg = z/vg = k′z that the change in tg due to Δω
will be:

Δtg = dtg
dω

Δω = dk′

dω
zΔω = d2k

dω2
zΔω = k′′zΔω (3.6.7)
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Fig. 3.6.1 Pulse spreading and chirping.

which can also be expressed in terms of the free-space wavelength λ = 2πc/ω:

Δtg = dtg
dλ

Δλ = dk′

dλ
zΔλ = DzΔλ (3.6.8)

where D is the “dispersion coefficient”

D = dk′

dλ
= −2πc

λ2

dk′

dω
= −2πc

λ2
k′′ (3.6.9)

where we replaced dλ = −(λ2/2πc)dω. Since k′ is related to the group refractive
index ng by k′ = 1/vg = ng/c, we may obtain an alternative expression for D directly
in terms of the refractive index n. Using Eq. (1.11.6), that is, ng = n− λdn/dλ, we find

D = dk′

dλ
= 1

c
dng
dλ

= 1

c
d
dλ

[
n− λdn

dλ

]
= −λ

c
d2n
dλ2

(3.6.10)

Combining Eqs. (3.6.9) and (3.6.10), we also have:

k′′ = λ3

2πc2

d2n
dλ2

(3.6.11)

In digital data transmission using optical fibers, the issue of pulse broadening as
measured by (3.6.8) becomes important because it limits the maximum usable bit rate,
or equivalently, the maximum propagation distance. The interpulse time interval of, say,
Tb seconds by which bit pulses are separated corresponds to a data rate of fb = 1/Tb
bits/second and must be longer than the broadening time, Tb > Δtg, otherwise the
broadened pulses will begin to overlap preventing their clear identification as separate.
This limits the propagation distance z to a maximum value:†

DzΔλ ≤ Tb = 1

fb
⇒ z ≤ 1

fb DΔλ
= 1

fb k′′Δω
(3.6.12)

Because D = Δtg/zΔλ, the parameter D is typically measured in units of picosec-
onds per km per nanometer—the km referring to the distance z and the nm to the
wavelength spread Δλ. Similarly, the parameter k′′ = Δtg/zΔω is measured in units of
ps2/km. As an example, we used the Sellmeier model for fused silica given in Eq. (1.9.18)
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Fig. 3.6.2 Refractive index and dispersion coefficient of fused silica.

to plot in Fig. 3.6.2 the refractive index n(λ) and the dispersion coefficientD(λ) versus
wavelength in the range 1 ≤ λ ≤ 1.6 μm.

We observe that D vanishes, and hence also k′′ = 0, at about λ = 1.27 μm corre-
sponding to dispersionless propagation. This wavelength is referred to as a “zero dis-
persion wavelength.” However, the preferred wavelength of operation is λ = 1.55 μm
at which fiber losses are minimized. At λ = 1.55, we calculate the following refractive
index values from the Sellmeier equation:

n = 1.444 ,
dn
dλ

= −11.98×10−3 μm−1 ,
d2n
dλ2

= −4.24×10−3 μm−2 (3.6.13)

resulting in the group index ng = 1.463 and group velocity vg = c/ng = 0.684c. Using
(3.6.10) and (3.6.11), the calculated values of D and k′′ are:

D = 21.9
ps

km · nm
, k′′ = −27.9

ps2

km
(3.6.14)

The ITU-G.652 standard single-mode fiber [206] has the following nominal values of
the dispersion parameters at λ = 1.55 μm:

D = 17
ps

km · nm
, k′′ = −21.67

ps2

km
(3.6.15)

with the dispersion coefficient D(λ) given approximately by the fitted linearized form
in the neighborhood of 1.55 μm:

D(λ)= 17+ 0.056(λ− 1550)
ps

km · nm
, with λ in units of nm

Moreover, the standard fiber has a zero-dispersion wavelength of about 1.31 μm and
an attenuation constant of about 0.2 dB/km.

We can use the values in (3.6.15) to get a rough estimate of the maximum propagation
distance in a standard fiber. We assume that the data rate is fb = 40 Gbit/s, so that the

†where the absolute values of D,k′′ must be used in Eq. (3.6.12).
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interpulse spacing is Tb = 25 ps. For a 10 picosecond pulse, i.e., τ0 = 10 ps and Δω =
1/τ0 = 0.1 rad/ps, we estimate the wavelength spread to be Δλ = (λ2/2πc)Δω =
0.1275 nm at λ = 1.55 μm. Using Eq. (3.6.12), we find the limit z ≤ 11.53 km—a
distance that falls short of the 40-km and 80-km recommended lengths.

Longer propagation lengths can be achieved by using dispersion compensation tech-
niques, such as using chirped inputs or adding negative-dispersion fiber lengths. We
discuss chirping and dispersion compensation in the next two sections.

The result (3.6.4) remains valid [163], with some caveats, when the wavenumber is
complex valued, k(ω)= β(ω)−jα(ω). The parameters k′0 = β′0 − jα′0 and k′′0 =
β′′0 − jα′′0 can be substituted in Eqs. (3.6.3) and (3.6.4):

F̂(z,ω)=
√

2πτ2
0 e−j(β

′
0−jα′0)zω e−

(
τ2

0+(α′′0 +jβ′′0 )z
)
ω2/2

F(z, t)=
√√√√ τ2

0

τ2
0 +α′′0 z+ jβ′′0 z

exp

[
−
(
t − (β′0 − jα′0)z

)2

2(τ2
0 +α′′0 z+ jβ′′0 z)

] (3.6.16)

The Fourier integral (3.5.18) requires that the real part of the effective complex width
τ2

0 + jk′′0 z = (τ2
0 + α′′0 z)+jβ′′0 z be positive, that is, τ2

0 + α′′0 z > 0. If α′′0 is negative,
this condition limits the distances z over which the above approximations are valid. The
exponent can be written in the form:

−
(
t − (β′0 − jα′0)z

)2

2(τ2
0 +α′′0 z+ jβ′′0 z)

= −(t − β
′
0z+ jα′oz)2(τ2

0 +α′′0 z− jβ′′0 z)
2
[
(τ2

0 +α′′0 z)2+(β′′0 z)2
] (3.6.17)

Separating this into its real and imaginary parts, one can show after some algebra
that the magnitude of F(z, t) is given by:†

|F(z, t)| =
[

τ4
0

(τ2
0 +α′′0 z)2+(β′′0 z)2

]1/4

exp

[
α′20 z2

2(τ2
0 +α′′0 z)

]
· exp

[
−(t − tg)

2

2τ2

]

(3.6.18)
where the peak of the pulse does not quite occur at the ordinary group delay tg = β′0z,
but rather at the effective group delay:

tg = β′0z−
α′0β′′0 z2

τ2
0 +α′′0 z

The effective width of the peak generalizes Eq. (3.6.6)

τ2 = τ2
0 +α′′0 z+

(β′′0 z)2

τ2
0 +α′′0 z

From the imaginary part of Eq. (3.6.17), we observe two additional effects. First, the
non-zero coefficient of the jt term is equivalent to a z-dependent frequency shift of the
carrier frequency ω0, and second, from the coefficient of jt2/2, there will be a certain
amount of chirping as discussed in the next section. The frequency shift and chirping
coefficient (generalizing Eq. (3.7.6)) turn out to be:

Δω0 = − α′oz(τ
2
0 +α′′0 z)

(τ2
0 +α′′0 z)2+(β′′0 z)2

, ω̇0 = β′′0 z
(τ2

0 +α′′0 z)2+(β′′0 z)2

†note that if F = AeB, then |F| = |A|eRe(B).
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In most applications and in the fast and slow light experiments that have been carried
out thus far, care has been taken to minimize these effects by operating in frequency
bands where α′0,α′′0 are small and by limiting the propagation distance z.

3.7 Propagation and Chirping

A chirped sinusoid has an instantaneous frequency that changes linearly with time,
referred to as linear frequency modulation (FM). It is obtained by the substitution:

ejω0t → ej(ω0t+ω̇0t2/2) (3.7.1)

where the “chirping parameter” ω̇0 is a constant representing the rate of change of the
instantaneous frequency. The phaseθ(t) and instantaneous frequency θ̇(t)= dθ(t)/dt
are for the above sinusoids:

θ(t)=ω0t → θ(t)=ω0t + 1

2
ω̇0t2

θ̇(t)=ω0 → θ̇(t)=ω0 + ω̇0t
(3.7.2)

The parameter ω̇0 can be positive or negative resulting in an increasing or decreasing
instantaneous frequency. A chirped gaussian pulse is obtained by modulating a chirped
sinusoid by a gaussian envelope:

E(0, t)= ej(ω0t+ω̇0t2/2) exp

[
− t2

2τ2
0

]
= ejω0t exp

[
− t2

2τ2
0
(1− jω̇0τ2

0)
]

(3.7.3)

which can be written in the following form, in the time and frequency domains:

E(0, t)= ejω0t exp

[
− t2

2τ2
chirp

]
� Ê(0,ω)=

√
2πτ2

chirp e
−τ2

chirp(ω−ω0)2/2 (3.7.4)

where τ2
chirp is an equivalent complex-valued width parameter defined by:

τ2
chirp =

τ2
0

1− jω̇0τ2
0
= τ2

0(1+ jω̇0τ2
0)

1+ ω̇2
0τ

4
0

(3.7.5)

Thus, a complex-valued width is associated with linear chirping. An unchirped gaus-
sian pulse that propagates by a distance z into a medium becomes chirped because it
acquires a complex-valued width, that is, τ2

0 + jk′′0 z, as given by Eq. (3.6.4). Therefore,
propagation is associated with chirping. Close inspection of Fig. 3.6.1 reveals that the
front of the pulse appears to have a higher carrier frequency than its back (in this figure,
we took k′′0 < 0, for normal dispersion). The effective chirping parameter ω̇0 can be
identified by writing the propagated envelope in the form:

F(z, t) =
√√√√ τ2

0

τ2
0 + jk′′0 z

exp

[
− (t − k′0z)2

2(τ2
0 + jk′′0 z)

]

=
√√√√ τ2

0

τ2
0 + jk′′0 z

exp

[
− (t − k′0z)2

2
(
τ4

0 + (k′′0 z)2
)(τ2

0 − jk′′0 z)
]
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Comparing with (3.7.3), we identify the chirping parameter due to propagation:

ω̇0 = k′′0 z
τ4

0 + (k′′0 z)2
(3.7.6)

If a chirped gaussian input is launched into a propagation medium, then the chirping
due to propagation will combine with the input chirping. The two effects can some-
times cancel each other leading to pulse compression rather than spreading. Indeed, if
the chirped pulse (3.7.4) is propagated by a distance z, then according to (3.6.4), the
propagated envelope will be:

F(z, t)=
√√√√ τ2

chirp

τ2
chirp + jk′′0 z

exp

[
− (t − k′0z)2

2(τ2
chirp + jk′′0 z)

]
(3.7.7)

The effective complex-valued width parameter will be:

τ2
chirp + jk′′0 z =

τ2
0(1+ jω̇0τ2

0)
1+ ω̇2

0τ
4
0

+ jk′′0 z =
τ2

0

1+ ω̇2
0τ

4
0
+ j

(
ω̇0τ4

0

1+ ω̇2
0τ

4
0
+ k′′0 z

)
(3.7.8)

If ω̇0 is selected such that
ω̇0τ4

0

1+ ω̇2
0τ

4
0
= −k′′0 z0

for some positive distance z0, then the effective width (3.7.8) can be written as:

τ2
chirp + jk′′0 z =

τ2
0

1+ ω̇2
0τ

4
0
+ jk′′0 (z− z0) (3.7.9)

and as z increases over the interval 0 ≤ z ≤ z0, the pulse width will be getting narrower,
becoming the narrowest at z = z0. Beyond, z > z0, the pulse width will start increasing
again. Thus, the initial chirping and the chirping due to propagation cancel each other
at z = z0. Some dispersion compensation methods are based on this effect.

3.8 Dispersion Compensation

The filtering effect of the propagation medium is represented in the frequency domain by
F̂(z,ω)= G(z,ω)F̂(0,ω), where the transfer functionG(z,ω) is given by Eq. (3.5.20).

To counteract the effect of spreading, a compensation filter Hcomp(ω) may be in-
serted at the end of the propagation medium as shown in Fig. 3.8.1 that effectively
equalizes the propagation response, up to a prescribed delay td, that is,

G(z,ω)Hcomp(ω)= e−jωtd ⇒ Hcomp(ω)= e−jωtd
G(z,ω)

(3.8.1)

The overall compensated output will be the input delayed by td, that is, Fcomp(z, t)=
F(0, t − td). For example, if the delay is chosen to be the group delay td = tg = k′0z,
then, in the quadratic approximation for G(z,ω), condition (3.8.1) reads:

G(z,ω)Hcomp(ω)= e−jk′0zωe−jk′′0 zω2/2Hcomp(ω)= e−jk′0zω
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Fig. 3.8.1 Dispersion compensation filters.

which gives for the compensation filter:

Hcomp(ω)= ejk′′0 zω2/2 (3.8.2)

with impulse response:

hcomp(t)= 1√
−2πjk′′0 z

exp

[
t2

2jk′′0 z

]
(3.8.3)

The output of the compensation filter will then agree with that of the linear approx-
imation case, that is, it will be the input delayed as a whole by the group delay:

Fcomp(z,ω)= Hcomp(ω)F̂(z,ω)= Hcomp(ω)G(z,ω)F̂(0,ω)= e−jk′0zωF̂(0,ω)
or, in the time domain, Fcomp(z, t)= F(0, t − k′0z).

As shown in Fig. 3.8.1, it is possible [198] to insert the compensation filter at the
input end. The pre-compensated input then suffers an equal and opposite dispersion as
it propagates by a distance z, resulting in the same compensated output. As an example,
an input gaussian and its pre-compensated version will be:

F̂(0,ω)=
√

2πτ2
0 e−τ

2
0ω2/2, F̂comp(0,ω)= Hcomp(ω)F̂(0,ω)=

√
2πτ2

0 e−(τ
2
0−jk′′0 z)ω2/2

and in the time domain:

F(0, t)= exp

[
− t2

2τ2
0

]
, Fcomp(0, t)=

√√√√ τ2
0

τ2
0 − jk′′0 z

exp

[
− t2

2(τ2
0 − jk′′0 z)

]

This corresponds to a chirped gaussian input with a chirping parameter opposite
that of Eq. (3.7.6). If the pre-compensated signal is propagated by a distance z, then its
new complex-width will be, (τ2

0 − jk′′0 z)+jk′′0 z = τ2
0, and its new amplitude:

√√√√ τ2
0

τ2
0 − jk′′0 z

√√√√ τ2
0 − jk′′0 z

(τ2
0 − jk′′0 z)+jk′′0 z

= 1

thus, including the group delay, the propagated signal will be Fcomp(z, t)= F(0, t−k′0z).
There are many ways of implementing dispersion compensation filters in optical

fiber applications, such as using appropriately chirped inputs, or using fiber delay-line
filters at either end, or appending a length of fiber that has equal end opposite disper-
sion. The latter method is one of the most widely used and is depicted below:
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To see how it works, let the appended fiber have length z1 and group delay and
dispersion parameters k′1, k′′1 . Then, its transfer function will be:

G1(z1,ω)= e−jk′1z1ωe−jk
′′
1 z1ω2/2

The combined transfer function of propagating through the main fiber of length z
followed by z1 will be:

G(z,ω)G1(z1,ω) = e−jk′0zωe−jk′′0 zω2/2e−jk
′
1z1ωe−jk

′′
1 z1ω2/2

= e−j(k′0z+k′1z1)ωe−j(k
′′
0 z+k′′1 z1)ω2/2

(3.8.4)

If k′′1 has the opposite sign from k′′0 and z1 is chosen such that k′′0 z+ k′′1 z1 = 0, or,
k′′1 z1 = −k′′0 z, then the dispersion will be canceled. Thus, up to a delay, G1(z1,ω) acts
just like the required compensation filter Hcomp(ω). In practice, the appended fiber is
manufactured to have |k′′1 | � |k′′0 |, so that its length will be short, z1 = −k′′0 z/k′′1  z.

3.9 Slow, Fast, and Negative Group Velocities

The group velocity approximations of Sec. 3.5 are valid when the signal band is narrowly
centered about a carrier frequencyω0 around which the wavenumber k(ω) is a slowly-
varying function of frequency to justify the Taylor series expansion (3.5.9).

The approximations are of questionable validity in spectral regions where the wave-
number, or equivalently, the refractive index n(ω), are varying rapidly with frequency,
such as in the immediate vicinity of absorption or gain resonances in the propaga-
tion medium. However, even in such cases, the basic group velocity approximation,
F(z, t)= F(0, t − z/vg), can be justified provided the signal bandwidth Δω is suffi-
ciently narrow and the propagation distance z is sufficiently short to minimize spread-
ing and chirping; for example, in the gaussian case, this would require the condition
|k′′0 z|  τ2

0, or, |k′′0 z(Δω)2|  1, as well as the condition | Im(k0)z|  1 to minimize
amplitude distortions due to absorption or gain.

Because near resonances the group velocity vg can be subluminal, superluminal, or
negative, this raises the issue of how to interpret the result F(z, t)= F(0, t−z/vg). For
example, if vg is negative within a medium of thickness z, then the group delay tg = z/vg
will be negative, corresponding to a time advance, and the envelope’s peak will appear
to exit the medium before it even enters it. Indeed, experiments have demonstrated
such apparently bizarre behavior [228,229,247]. As we mentioned in Sec. 3.2, this is
not at odds with relativistic causality because the peaks are not necessarily causally
related—only sharp signal fronts may not travel faster than c.

The gaussian pulses used in the above experiments do not have a sharp front. Their
(infinitely long) forward tail can enter and exit the medium well before the peak does.
Because of the spectral reshaping taking place due to the propagation medium’s re-
sponse e−jk(ω)z, the forward portion of the pulse that is already within the propagation
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medium, and the portion that has already exited, can get reshaped into a peak that ap-
pears to have exited before the peak of the input has entered. In fact, before the incident
peak enters the medium, two additional peaks develop caused by the forward tail of the
input: the one that has already exited the medium, and another one within the medium
traveling backwards with the negative group velocity vg. Such backward-moving peaks
have been observed experimentally [275]. We clarify these remarks later on by means
of the numerical example shown in Fig. 3.9.4 and elaborated further in Problem 3.10.

Next, we look at some examples that are good candidates for demonstrating the
above ideas. We recall from Sec. 1.11 the following relationships between wavenumber
k = β − jα, refractive index n = nr − jni, group index ng, and dispersion coefficient
k′′, where all the quantities are functions of the frequency ω:

k = β− jα = ωn
c
= ω(nr − jni)

c

k′ = dk
dω

= 1

c
d(ωn)
dω

= ng
c

⇒ vg = 1

Re(k′)
= c

Re(ng)

k′′ = d2k
dω2

= 1

c
dng
dω

= n′g
c

(3.9.1)

We consider first a single-resonance absorption or gain Lorentz medium with per-
mittivity given by Eq. (1.9.15), that is, having susceptibility χ and refractive index n:

χ = fω2
p

ω2
r −ω2 + jωγ ⇒ n =

√
1+ χ =

√√√√1+ fω2
p

ω2
r −ω2 + jωγ (3.9.2)

where ωr,γ are the resonance frequency and linewidth, and ωp, f are the plasma fre-
quency and oscillator strength. For an absorption medium, we will set f = 1, for a gain
medium, f = −1, and for vacuum, f = 0. To simplify the algebra, we may use the
approximation (1.11.3), that is,

n =
√

1+ χ � 1+ 1

2
χ = 1+ fω2

p/2
ω2
r −ω2 + jωγ (3.9.3)

This approximation is fairly accurate in the numerical examples that we consider.
The corresponding complex-valued group index follows from (3.9.3):

ng = d(ωn)
dω

= 1+ fω2
p(ω2 +ω2

r)/2
(ω2

r −ω2 + jωγ)2
(3.9.4)

with real and imaginary parts:

Re(ng) = 1+ fω
2
p(ω2 +ω2

r)
[
(ω2 −ω2

r)2−ω2γ2
]

[
(ω2 −ω2

r)2+ω2γ2
]2

Im(ng) =
fω2

pγω(ω4 −ω4
r)[

(ω2 −ω2
r)2+ω2γ2

]2

(3.9.5)

Similarly, the dispersion coefficient dng/dω is given by:

n′g =
dng
dω

= fω2
p(ω3 + 3ω2

rω− jγω2
r)

(ω2
r −ω2 + jωγ)3

(3.9.6)
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At resonance, ω =ωr , we find the values:

n = 1− j fω
2
p

2γωr
, ng = 1− fω

2
p

γ2
(3.9.7)

For an absorption medium (f = 1), if ωp < γ, the group index will be 0 < ng < 1,
resulting into a superluminal group velocity vg = c/ng > c, but if γ < ωp, which is the
more typical case, then the group index will become negative, resulting into a negative
vg = c/ng < 0. This is illustrated in the top row of graphs of Fig. 3.9.1. On the other
hand, for a gain medium (f = −1), the group index is always ng > 1 at resonance,
resulting into a subluminal group velocity vg = c/ng < c. This is illustrated in the
middle and bottom rows of graphs of Fig. 3.9.1.
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Fig. 3.9.1 Slow, fast, and negative group velocities (at off resonance).

Fig. 3.9.1 plots n(ω)= nr(ω)−jni(ω) and Re
[
ng(ω)

]
versus ω, evaluated us-

ing Eqs. (3.9.3) and (3.9.4), with the frequency axis normalized in units of ω/ωr . The
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following values of the parameters were used (with arbitrary frequency units):

(top row) f = +1 , ωp = 1 , ωr = 5 , γ = 0.4
(middle row) f = −1 , ωp = 1 , ωr = 5 , γ = 0.4
(bottom row) f = −1 , ωp = 1 , ωr = 5 , γ = 0.2

The calculated values of n,ng at resonance were:

(top) ω =ωr , n = 1− 0.25j , ng = −5.25
(middle) ω =ωr , n = 1+ 0.25j , ng = 7.25
(bottom) ω =ωr , n = 1+ 0.5j , ng = 26

Operating at resonance is not a good idea because of the fairly substantial amounts
of attenuation or gain arising from the imaginary part ni of the refractive index, which
would cause amplitude distortions in the signal as it propagates.

A better operating frequency band is at off resonance where the attenuation or gain
are lower [234]. The top row of Fig. 3.9.1 shows such a band centered at a frequencyω0

on the right wing of the resonance, with a narrow enough bandwidth to justify the Taylor
series expansion (3.5.9). The group velocity behavior is essentially the reverse of that at
resonance, that is, vg becomes subluminal for the absorption medium, and superluminal
or negative for the gain medium. The carrier frequencyω0 and the calculated values of
n,ng at ω =ω0 were as follows:

(top, slow) ω0/ωr = 1.12 , n = 0.93− 0.02j , ng = 1.48+ 0.39j
(middle, fast) ω0/ωr = 1.12 , n = 1.07+ 0.02j , ng = 0.52− 0.39j
(bottom, negative) ω0/ωr = 1.07 , n = 1.13+ 0.04j , ng = −0.58− 1.02j

We note the sign and magnitude of Re(ng) and the substantially smaller values of
the imaginary part ni. For the middle graph, the group index remains in the interval
0 < Re(ng)< 1, and hence vg > c, for all values of the frequency in the right wing of
the resonance.

In order to get negative values for Re(ng) and for vg, the linewidth γ must be re-
duced. As can be seen in the bottom row of graphs, Re(ng) becomes negative over a
small range of frequencies to the right and left of the resonance. The edge frequencies
can be calculated from the zero-crossings of Re(ng) and are shown on the graph. For
the given parameter values, they were found to be (in units of ω/ωr):

[0.9058, 0.9784] , [1.0221, 1.0928]

The chosen value of ω0/ωr = 1.07 falls inside the right interval.
Another way of demonstrating slow, fast, or negative group velocities with low at-

tenuation or gain, which has been used in practice, is to operate at a frequency band
that lies between two nearby absorption or gain lines.

Some examples are shown in Fig. 3.9.2. The top row of graphs depicts the case of
two nearby absorption lines. In the band between the lines, the refractive index exhibits
normal dispersion. Exactly at midpoint, the attenuation is minimal and the real part
nr has a steep slope that causes a large group index, Re(ng)� 1, and hence a small
positive group velocity 0 < vg  c. In experiments, very sharp slopes have been
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Fig. 3.9.2 Slow, fast, and negative group velocities (halfway between resonances).

achieved through the use of the so-called “electromagnetically induced transparency,”
resulting into extremely slow group velocities of the order of tens of m/sec [289].

The middle row of graphs depicts two nearby gain lines [235] with a small gain
at midpoint and a real part nr that has a negative slope resulting into a group index
0 < Re(ng)< 1, and a superluminal group velocity vg > c.

Choosing more closely separated peaks in the third row of graphs, has the effect of
increasing the negative slope of nr , thus causing the group index to become negative
at midpoint, Re(ng)< 0, resulting in negative group velocity, vg < 0. Experiments
demonstrating this behavior have received a lot of attention [247].

The following expressions were used in Fig. 3.9.2 for the refractive and group indices,
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with f = 1 for the absorption case, and f = −1 for the gain case:

n = 1+ fω2
p/2

ω2
1 −ω2 + jωγ +

fω2
p/2

ω2
2 −ω2 + jωγ

ng = 1+ fω2
p(ω2 +ω2

1)/2
(ω2

1 −ω2 + jωγ)2
+ fω2

p(ω2 +ω2
2)/2

(ω2
2 −ω2 + jωγ)2

(3.9.8)

The two peaks were symmetrically placed about the midpoint frequency ω0, that
is, at ω1 = ω0 − Δ and ω2 = ω0 + Δ, and a common linewidth γ was chosen. The
particular numerical values used in this graph were:

(top, slow) f = +1 , ωp = 1 , ω0 = 5 , Δ = 0.25 , γ = 0.1
(middle, fast) f = −1 , ωp = 1 , ω0 = 5 , Δ = 0.75 , γ = 0.3
(bottom, negative) f = −1 , ωp = 1 , ω0 = 5 , Δ = 0.50 , γ = 0.2

resulting in the following values for n and ng:

(top, slow) n = 0.991− 0.077j , ng = 8.104+ 0.063j
(middle, fast) n = 1.009+ 0.026j , ng = 0.208− 0.021j
(bottom, negative) n = 1.009+ 0.039j , ng = −0.778− 0.032j

Next, we look at an example of a gaussian pulse propagating through a medium with
negative group velocity. We consider a single-resonance gain medium and operating
frequency band similar to that shown in the bottom row of graphs in Fig. 3.9.1. This
example is variation of that discussed in [234]. Fig. 3.9.3 shows the geometry.

Fig. 3.9.3 Absorption and gain media separated by vacuum.

The gaussian pulse begins in vacuum on the left, then it enters an absorbing medium
of thickness a in which it propagates with a slow group velocity suffering a modest
amount of attenuation. It then enters a vacuum region of width 2a, followed by a gain
medium of thickness a in which it propagates with negative group velocity suffering a
moderate amount gain, and finally it exits into vacuum.

The attenuation and gain are adjusted to compensate each other, so that the final
output vacuum pulse is identical to the input.

The wavenumbers kv, ka, kg, in vacuum, the absorption and gain media are cal-
culated from Eqs. (3.9.1)–(3.9.6) with f = 0,+1,−1, respectively. The analytical and
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Fig. 3.9.4 Snapshots of pulse propagating through regions of different group velocities.

numerical details for this example are outlined in Problem 3.10. Fig. 3.9.4 shows a se-
ries of snapshots. The short vertical arrow on the horizontal axis represents the position
of the peak of an equivalent pulse propagating in vacuum.

At t = −50 (in units such that c = 1), the forward tail of the gaussian pulse has
already entered the absorbing medium. Between 0 ≤ t ≤ 120, the peak of the pulse
has entered the absorbing medium and is being attenuated as it propagates while it lags
behind the equivalent vacuum pulse because vg < c.

At t = 120, while the peak is still in the absorbing medium, the forward tail has
passed through the middle vacuum region and has already entered into the gain medium
where it begins to get amplified. At t = 180, the peak has moved into the middle vacuum
region, but the forward tail has been sufficiently amplified by the gain medium and is
beginning to form a peak whose tail has already exited into the rightmost vacuum region.

At t = 220, the peak is still within the middle vacuum region, but the output peak
has already exited into the right, while another peak has formed at the right side of the
gain medium and begins to move backwards with the negative group velocity, vg < 0.
Meanwhile, the output peak has caught up with the equivalent vacuum peak.

Between 230 ≤ t ≤ 260, the peak within the gain medium continues to move back-
wards while the output vacuum peak moves to the right. As we mentioned earlier, such
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output peaks that have exited before the input peaks have entered the gain medium,
including the backward moving peaks, have been observed experimentally [275].

A MATLAB movie of this example may be seen by running the file grvmovie1.m in the
movies subdirectory of the ewa toolbox. See also the movie grvmovie2.m in which the
carrier frequency has been increased and corresponds to a superluminal group velocity
(vg > c) for the gain medium. In this case, which is also described in Problem 3.10, all
the peaks are moving forward.

3.10 Chirp Radar and Pulse Compression

Pulse Radar Requirements

The chirping and dispersion compensation concepts discussed in the previous sections
are applicable also to chirp radar systems. Here, we give a brief introduction to the main
ideas [320] and the need for pulse compression.

In radar, the propagation medium is assumed to be non-dispersive (e.g., air), hence,
it introduces only a propagation delay. Chirping is used to increase the bandwidth of the
transmitted radar pulses, while keeping their time-duration long. The received pulses
are processed by a dispersion compensation filter that cancels the frequency dispersion
introduced by chirping and results in a time-compressed pulse. The basic system is
shown in Fig. 3.10.1. The technique effectively combines the benefits of a long-duration
pulse (improved detectability and Doppler resolution) with those of a broadband pulse
(improved range resolution.)

A typical pulsed radar sends out sinusoidal pulses of some finite duration of, say, T
seconds. A pulse reflected from a stationary target at a distance R returns back at the
radar attenuated and with an overall round-trip delay of td = 2R/c seconds. The range
R is determined from the delay td. An uncertainty in measuring td from two nearby
targets translates into an uncertainty in the range, ΔR = c(Δtd)/2. Because the pulse
has duration T, the uncertainty in td will be Δtd = T, and the uncertainty in the range,
ΔR = cT/2. Thus, to improve the range resolution, a short pulse duration T must be
used.

Fig. 3.10.1 Chirp radar system.
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On the other hand, the detectability of the received pulse requires a certain minimum
value of the signal-to-noise ratio (SNR), which in turn, requires a large value of T. The
SNR at the receiver is given by

SNR = Erec

N0
= PrecT

N0

wherePrec andErec = PrecT denote the power and energy of the received pulse, andN0 is
the noise power spectral density given in terms of the effective noise temperature Te of
the receiver byN0 = kTe (as discussed in greater detail in Sec. 15.7). It follows from the
radar equation (15.11.4) of Sec. 15.11, that the received power Prec is proportional to the
transmitter power Ptr and inversely proportional to the fourth power of the distance R.
Thus, to keep the SNR at detectable levels for large distances, a large transmitter power
and corresponding pulse energy Etr = PtrT must be used. This can be achieved by
increasing T, while keeping Ptr at manageable levels.

The Doppler velocity resolution, similarly, improves with increasing T. The Doppler
frequency shift for a target moving at a radial velocity v is fd = 2f0v/c, where f0 is
the carrier frequency. We will see below that the uncertainty in fd is given roughly by
Δfd = 1/T. Thus, the uncertainty in speed will be Δv = c(Δfd)/2f0 = c/(2f0T).

The simultaneous conflicting requirements of a short duration T to improve the
resolution in range, and a large durationT to improve the detectability of distant targets
and Doppler resolution, can be realized by sending out a pulse that has both a long
duration T and a very large bandwidth of, say, B Hertz, such that BT � 1. Upon
reception, the received pulse can be compressed with the help of a compression filter to
the much shorter duration of Tcompr = 1/B seconds, which satisfies Tcompr = 1/B T.
The improvement in range resolution will be then ΔR = cTcompr/2 = c/2B.

In summary, the following formulas capture the tradeoffs among the three require-
ments of detectability, range resolution, and Doppler resolution:

SNR = Erec

N0
= PrecT

N0
, ΔR = c

2B
, Δv = c

2f0T
(3.10.1)

For example, to achieve a 30-meter range resolution and a 50 m/s (180 km/hr) veloc-
ity resolution at a 3-GHz carrier frequency, would require B = 5 MHz and T = 1 msec,
resulting in the large time-bandwidth product of BT = 5000.

Such large time-bandwidth products cannot be achieved with plain sinusoidal pulses.
For example, an ordinary, unchirped, sinusoidal rectangular pulse of duration of T sec-
onds has an effective bandwidth of B = 1/T Hertz, and hence, BT = 1. This follows
from the Fourier transform pair:

E(t)= rect
(
t
T

)
ejω0t � Ê(ω)= T sin

(
(ω−ω0)T/2

)
(ω−ω0)T/2

(3.10.2)

where rect(x) is the rectangular pulse defined with the help of the unit step u(x):

rect(x)= u(x+ 0.5)−u(x− 0.5)=
⎧⎨
⎩1, if |x| < 0.5

0, if |x| > 0.5

It follows from (3.10.2) that the 3-dB width of the spectrum is Δω = 0.886(2π)/T,
or in Hz,Δf = 0.886/T, and similarly, the quantityΔf = 1/T represents the 4-dB width.
Thus, the effective bandwidth of the rectangular pulse is 1/T.
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Linear FM Signals

It is possible, nevertheless, to have a waveform whose envelope has an arbitrary dura-
tion T while its spectrum has an arbitrary width B, at least in an approximate sense.
The key idea in accomplishing this is to have the instantaneous frequency of the signal
vary—during the duration T of the envelope—over a set of values that span the de-
sired bandwidth B. Such time variation of the instantaneous frequency translates in the
frequency domain to a spectrum of effective width B.

The simplest realization of this idea is through linear FM, or chirping, that corre-
sponds to a linearly varying instantaneous frequency. More complicated schemes exist
that use nonlinear time variations, or, using phase-coding in which the instantaneous
phase of the signal changes by specified amounts during the duration T in such a way
as to broaden the spectrum. A chirped pulse is given by:

E(t)= F(t)ejω0t+jω̇0t2/2 (3.10.3)

where F(t) is an arbitrary envelope with an effective duration T, defined for example
over the time interval −T/2 ≤ t ≤ T/2. The envelope F(t) can be specified either in the
time domain or in the frequency domain by means of its spectrum F̂(ω):

F̂(ω)=
∫∞
−∞
F(t)e−jωt dt � F(t)= 1

2π

∫∞
−∞
F̂(ω)ejωt dω (3.10.4)

Typically, F(t) is real-valued and therefore, the instantaneous frequency of (3.10.3)
isω(t)= θ̇(t)=ω0+ ω̇0t. During the time interval −T/2 ≤ t ≤ T/2, it varies over the
band ω0 − ω̇0T/2 ≤ω(t)≤ω0 + ω̇0T/2, (we are assuming here that ω̇0 > 0.) Hence,
it has an effective total bandwidth:

Ω = ω̇0T , or, in units of Hz , B = Ω
2π

= ω̇0T
2π

(3.10.5)

Thus, given T and B, the chirping parameter can be chosen to be ω̇0 = 2πB/T. We
will look at some examples of F(t) shortly and confirm that the spectrum of the chirped
signal E(t) is effectively confined in the band |f − f0| ≤ B/2. But first, we determine
the compression filter.

Pulse Compression Filter

The received signal reflected from a target is an attenuated and delayed copy of the
transmitted signal E(t), that is,

Erec(t)= aE(t − td)= aF(t − td)ejω0(t−td)+jω̇0(t−td)2/2 (3.10.6)

where a is an attenuation factor determined from the radar equation to be the ratio of
the received to the transmitted powers: a2 = Prec/Ptr.

If the target is moving with a radial velocity v towards the radar, there will be a
Doppler shift by ωd = 2vω0/c. Although this shift affects all the frequency compo-
nents, that is, ω → ω +ωd, it is common to make the so-called narrowband approxi-
mation in which only the carrier frequency is shifted ω0 → ω0 +ωd. This is justified



3.10. Chirp Radar and Pulse Compression 113

for radar signals because, even though the bandwidth Ω is wide, it is still only a small
fraction (typically one percent) of the carrier frequency, that is, Ω  ω0. Thus, the
received signal from a moving target is taken to be:

Erec(t)= aE(t − td)ejωd(t−td) = aF(t − td)ej(ω0+ωd)(t−td)+jω̇0(t−td)2/2 (3.10.7)

To simplify the notation, we will ignore the attenuation factor and the delay, which
can be restored at will later, and take the received signal to be:

Erec(t)= E(t)ejωdt = F(t)ej(ω0+ωd)t+jω̇0t2/2 (3.10.8)

This signal is then processed by a pulse compression filter that will compress the
waveform to a shorter duration. To determine the specifications of the compression
filter, we consider the unrealizable case of a signal that has infinite duration and infinite
bandwidth defined by F(t)= 1, for −∞ < t < ∞. For now, we will ignore the Doppler
shift so that Erec(t)= E(t). Using Eq. (3.5.18), the chirped signal and its spectrum are:

E(t)= ejω0t+jω̇0t2/2 � Ê(ω)=
√

2πj
ω̇0

e−j(ω−ω0)2/2ω̇0 (3.10.9)

Clearly, the magnitude spectrum is constant and has infinite extent spanning the en-
tire frequency axis. The compression filter must equalize the quadratic phase spectrum
of the signal, that is, it must have the opposite phase:

Hcompr(ω)= ej(ω−ω0)2/2ω̇0 (pulse compression filter) (3.10.10)

The corresponding impulse response is the inverse Fourier transform of Eq. (3.10.10):

hcompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 (pulse compression filter) (3.10.11)

The resulting output spectrum for the input (3.10.9) will be:

Êcompr(ω)= Hcompr(ω)Ê(ω)=
√

2πj
ω̇0

e−j(ω−ω0)2/2ω̇0 · ej(ω−ω0)2/2ω̇0 =
√

2πj
ω̇0

that is, a constant for all ω. Hence, the input signal gets compressed into a Dirac delta:

Ecompr(t)=
√

2πj
ω̇0

δ(t) (3.10.12)

When the envelope F(t) is a finite-duration signal, the resulting spectrum of the
chirped signal E(t) still retains the essential quadratic phase of Eq. (3.10.9), and there-
fore, the compression filter will still be given by Eq. (3.10.10) for all choices ofF(t). Using
the stationary-phase approximation, Problem 3.17 shows that the quadratic phase is a
general property. The group delay of this filter is given by Eq. (3.2.1):

tg = − d
dω

[
(ω−ω0)2

2ω̇0

]
= −ω−ω0

ω̇0
= −2π(f − f0)

2πB/T
= −T f − f0

B
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As the frequency (f − f0) increases from −B/2 to B/2, the group delay decreases
from T/2 to −T/2, that is, the lower frequency components, which occur earlier in the
chirped pulse, suffer a longer delay through the filter. Similarly, the high frequency
components, which occur later in the pulse, suffer a shorter delay, the overall effect
being the time compression of the pulse.

It is useful to demodulate the sinusoidal carrier ejω0t and writehcompr(t)= ejωotg(t)
andHcompr(ω)= G(ω−ω0), where the demodulated “baseband” filter, which is known
as a quadrature-phase filter, is defined by:

g(t)=
√
jω̇0

2π
e−jω̇0t2/2 , G(ω)= ejω2/2ω̇0 (quadratic phase filter) (3.10.13)

For an arbitrary envelope F(t), one can derive the following fundamental result that
relates the output of the compression filter (3.10.11) to the Fourier transform, F̂(ω), of
the envelope, when the input is E(t)= F(t)ejω0t+jω̇0t2/2 :

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 F̂(−ω̇0t) (3.10.14)

This result belongs to a family of so-called “chirp transforms” or “Fresnel trans-
forms” that find application in optics, the diffraction effects of lenses [1160], and in
other areas of signal processing, such as for example, the “chirp z-transform” [47]. To
show Eq. (3.10.14), we use the convolutional definition for the filter output:

Ecompr(t) =
∫∞
−∞
hcompr(t − t′)E(t′)dt′

=
√
jω̇0

2π

∫∞
−∞
ejω0(t−t′)−jω̇0(t−t′)2/2 F(t′)ejω0t′+jω̇0t′2/2 dt′

=
√
jω̇0

2π
ejω0t−jω̇0t2/2

∫∞
−∞
F(t′)ej(ω̇0t)t′ dt′

where the last integral factor is recognized as F̂(−ω̇0t). As an example, Eq. (3.10.12)
can be derived immediately by noting that F(t)= 1 has the Fourier transform F̂(ω)=
2πδ(ω), and therefore, using Eq. (3.10.14), we have:

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 2πδ(−ω̇0t)=

√
2πj
ω̇0

δ(t)

where we used the property δ(−ω̇0t)= δ(ω̇0t)= δ(t)/ω̇0 and set t = 0 in the expo-
nentials.

The property (3.10.14) is shown pictorially in Fig. 3.10.2. This arrangement can also
be thought of as a real-time spectrum analyzer of the input envelope F(t).

In order to remove the chirping factor e−jω̇0t2/2, one can prefilter F(t) with the
baseband filter G(ω) and then apply the above result to its output. This leads to a
modified compressed output given by:

Ēcompr(t)=
√
jω̇0

2π
eiω0t F̂(−ω̇0t) (3.10.15)
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Fig. 3.10.2 Pulse compression filter.

Fig. 3.10.2 also depicts this property. To show it, we note the identity:

ejω0t−jω̇0t2/2 F̂(−ω̇0t)= ejω0t
[
e−jω

2/2ω̇0 F̂(ω)
]
ω=−ω̇0t

Thus, if in this expression F̂(ω) is replaced by its prefiltered version G(ω)F̂(ω),
then the quadratic phase factor will be canceled leaving only F̂(ω).

For a moving target, the envelopeF(t) is replaced byF(t)ejωdt, and F̂(ω) is replaced
by F̂(ω−ωd), and similarly, F̂(−ω̇0t) is replaced by F̂(−ω̇0t−ωd). Thus, Eq. (3.10.14)
is modified as follows:

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 F̂

(−(ωd + ω̇0t)
)

(3.10.16)

Chirped Rectangular Pulse

Next, we discuss the practical case of a rectangular envelope of duration T:

F(t)= rect
(
t
T

)
⇒ E(t)= rect

(
t
T

)
ejω0t+jω̇0t2/2 (3.10.17)

From Eq. (3.10.2), the Fourier transform of F(t) is,

F̂(ω)= T sin(ωT/2)
ωT/2

Therefore, the output of the compression filter will be:

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2 F̂(−ω̇0t)=

√
jω̇0

2π
ejω0t−jω̇0t2/2T

sin(−ω̇0tT/2)
−ω̇0tT/2

Noting that ω̇0T = Ω = 2πB and that
√
jω̇0T2/2π = √

jBT, we obtain:

Ecompr(t)=
√
jBT ejω0t−jω̇0t2/2 sin(πBt)

πBt
(3.10.18)

The sinc-function envelope sin(πBt)/πBt has an effective compressed width of
Tcompr = 1/B measured at the 4-dB level. Moreover, the height of the peak is boosted
by a factor of

√
BT.
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Fig. 3.10.3 shows a numerical example with the parameter values T = 30 and B = 4
(in arbitrary units), andω0 = 0. The left graph plots the real part of E(t) of Eq. (3.10.17).
The right graph is the real part of Eq. (3.10.18), where because of the factor

√
j, the peak

reaches the maximum value of
√
BT/

√
2.
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Fig. 3.10.3 FM pulse and its compressed version, with T = 30, B = 4, f0 = 0.

We may also determine the Fourier transform of E(t) of Eq. (3.10.17) and verify that
it is primarily confined in the band |f − f0| ≤ B/2. We have:

Ê(ω)=
∫∞
−∞
E(t)e−jωt dt =

∫ T/2
−T/2

ejω0t+jω̇0t2/2e−jωt dt

After changing variables from t to u = √
ω̇0/π

[
t − (ω −ω0)/ω̇0

]
, this integral

can be reduced to the complex Fresnel integral F(x)= C(x)−jS(x)= ∫ x
0 e−jπu

2/2 du
discussed in greater detail in Appendix F. The resulting spectrum then takes the form:

Ê(ω)=
√
π
ω̇0

e−j(ω−ω0)2/2ω̇0
[F(w+)−F(w−)]∗

which can be written in the normalized form:

Ê(ω)=
√

2πj
ω̇0

e−j(ω−ω0)2/2ω̇0 D∗(ω) , D(ω)= F(w+)−F(w−)
1− j (3.10.19)

where w± are defined by:

w± =
√
ω̇0

π

(
±T

2
− ω−ω0

ω̇0

)
= √2BT

(
±1

2
− f − f0

B

)
(3.10.20)

Eq. (3.10.19) has the expected quadratic phase term and differs from (3.10.9) by the
factor D∗(ω). This factor has a magnitude that is effectively confined within the ideal
band |f − f0| ≤ B/2 and a phase that remains almost zero within the same band, with
both of these properties improving with increasing time-bandwidth product BT.† Thus,

†The denominator (1− j) in D(ω) is due to the asymptotic value of F(∞)= (1− j)/2.
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the choice for the compression filter that was made on the basis of the quadratic phase
term is justified.

Fig. 3.10.4 displays the spectrum Ê(ω) for the valuesT = 30 andB = 4, andω0 = 0.
The left and right graphs plot the magnitude and phase of the quantity D∗(ω). For
comparison, the spectrum of an ordinary, unchirped, pulse of the same durationT = 30,
given by Eq. (3.10.2), is also shown on the magnitude graph. The Fresnel functions were
evaluated with the help of the MATLAB function fcs.m of Appendix F. The ripples that
appear in the magnitude and phase are due to the Fresnel functions.
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Fig. 3.10.4 Frequency spectrum of FM pulse, with T = 30, B = 4, f0 = 0.

Doppler Ambiguity

For a moving target causing a Doppler shiftωd, the output will be given by Eq. (3.10.16),
which for the rectangular pulse gives:

Ecompr(t)=
√
jω̇0

2π
ejω0t−jω̇0t2/2T

sin
(
(ωd + ω̇0t)T/2)
(ωd + ω̇0t)T/2

Noting that (ωd+ω̇0t)T = 2π(fdT+Bt), and replacing t by t− td to restore the actual
delay of arrival of the received pulse, we obtain:

Ecompr(t, fd)=
√
jBT ejω0(t−td)−jω̇0(t−td)2/2 sin

[
π
(
fdT + B(t − td)

)]
π
(
fdT + B(t − td)

) (3.10.21)

It is seen that the peak of the pulse no longer takes place at t = td, but rather at the
shifted time fdT+B(t− td)= 0, or, t = td− fdT/B, resulting in a potential ambiguity in
the range. Eq. (3.10.21) is an example of an ambiguity function commonly used in radar
to quantify the simultaneous uncertainty in range and Doppler. Setting t = td, we find:

Ecompr(td, fd)=
√
jBT

sin(πfdT)
πfdT

(3.10.22)

which shows that the Doppler resolution isΔfd = 1/T, as we discussed at the beginning.
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Sidelobe Reduction

Although the filter output (3.10.18) is highly compressed, it has significant sidelobes
that are approximately 13 dB down from the main lobe. Such sidelobes, referred to as
“range sidelobes,” can mask the presence of small nearby targets.

The sidelobes can be suppressed using windowing, which can be applied either in the
time domain or the frequency domain. To reduce sidelobes in one domain (frequency
or time), one must apply windowing to the conjugate domain (time or frequency).

Because the compressed output envelope is the Fourier transform F̂(ω) evaluated
at ω = −ω̇0t, the sidelobes can be suppressed by applying a time window w(t) of
length T to the envelope, that is, replacing F(t) by Fw(t)= w(t)F(t). Alternatively, to
reduce the sidelobes in the time signal F̂(−ω̇0t), one can apply windowing to its Fourier
transform, which can be determined as follows:

ˆ̂F(ω)=
∫∞
−∞
F̂(−ω̇0t)e−jωtdt =

∫∞
−∞
F̂(ω′)ejωω

′/ω̇0 dω′/ω̇0 = 2π
ω̇0

F(ω/ω̇0)

that is, the time-domain envelope F(t) evaluated at t = ω/ω̇0. Thus, a time window
w(t) can just as well be applied in the frequency domain in the form:

ˆ̂F(ω)= F(ω/ω̇0) ⇒ ˆ̂Fw(ω)= w(ω/ω̇0)F(ω/ω̇0)

Since w(t) is concentrated over −T/2 ≤ t ≤ T/2, the frequency window w(ω/ω̇0)
will be concentrated over

−T
2
≤ ω
ω̇0

≤ T
2

⇒ −Ω
2
≤ω ≤ Ω

2

whereΩ = ω̇0T = 2πB. For example, a Hamming window, which affords a suppression
of the sidelobes by 40 dB, can be applied in the time or frequency domain:

w(t) = 1+ 2α cos
(

2πt
T

)
, −T

2
≤ t ≤ T

2

w(ω/ω̇0) = 1+ 2α cos
(

2πω
Ω

)
, −Ω

2
≤ω ≤ Ω

2

(3.10.23)

where 2α = 0.46/0.54, or, α = 0.4259.† The time-domain window can be implemented
in a straightforward fashion using delays. Writing w(t) in exponential form, we have

w(t)= 1+α[e2πjt/T + e−2πjt/T]
The spectrum of Fw(t)= w(t)F(t)=

(
1+α[e2πjt/T + e−2πjt/T])F(t) will be:

F̂w(ω)= F̂(ω)+α
[
F̂(ω− 2π/T)+F̂(ω+ 2π/T)

]
Thus, the envelope of the compressed signal will be:

F̂w(−ω̇0t) = F̂(−ω̇0t)+α
[
F̂(−ω̇0t − 2π/T)+F̂(−ω̇0t + 2π/T)

]
= F̂(−ω̇0t)+α

[
F̂
(−ω̇0(t +Tcompr)

)+ F̂(−ω̇0(t −Tcompr)
)]

†This definition of w(t) differs from the ordinary Hamming window by a factor of 0.54.
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where Tcompr = 2πT/ω̇0 = 1/B. It follows that the compressed output will be:

Ecompr(t)=
√
jBT ejω0t−jω̇0t2/2 [sinc(Bt)+α sinc(Bt + 1)+α sinc(Bt − 1)] (3.10.24)

where sinc(x)= sin(πx)/πx, and we wrote B(t±Tcompr)= (Bt± 1). Fig. 3.10.5 shows
the Hamming windowed chirped pulse and the corresponding compressed output com-
puted from Eq. (3.10.24).
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Fig. 3.10.5 Hamming windowed FM pulse and its compressed version, with T = 30, B = 4.

The price to pay for reducing the sidelobes is a somewhat wider mainlobe width.
Measured at the 4-dB level, the width of the compressed pulse is Tcompr = 1.46/B, as
compared with 1/B in the unwindowed case.

Matched Filter

A more appropriate choice for the compression filter is the matched filter, which maxi-
mizes the receiver’s SNR. Without getting into the theoretical justification, a filter matched
to a transmitted waveform E(t) has the conjugate-reflected impulse response h(t)=
E∗(−t) and corresponding frequency response H(ω)= Ê∗(ω). In particular for the
rectangular chirped pulse, we have:

E(t)= rect
(
t
T

)
ejω0t+jω̇0t2/2 ⇒ h(t)= E∗(−t)= rect

(
t
T

)
ejω0t−jω̇0t2/2 (3.10.25)

which differs from our simplified compression filter by the factor rect(t/T). Its fre-
quency response is given by the conjugate of Eq. (3.10.19)

H(ω)=
√
−2πj
ω̇0

ej(ω−ω0)2/2ω̇0 D(ω) , D(ω)= F(w+)−F(w−)
1− j (3.10.26)

We have seen that the factor D(ω) is essentially unity within the band |f − f0| ≤
B/2. Thus again, the matched filter resembles the filter (3.10.10) within this band. The
resulting output of the matched filter is remarkably similar to that of Eq. (3.10.18):

Ecompr(t)= ejω0t T
sin(πB|t| −πBt2/T)

πB|t| , for −T ≤ t ≤ T (3.10.27)
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while it vanishes for |t| > T.
In practice, the matched/compression filters are conveniently realized either dig-

itally using digital signal processing (DSP) techniques or using surface acoustic wave
(SAW) devices [345]. Similarly, the waveform generator of the chirped pulse may be
realized using DSP or SAW methods. A convenient generation method is to send an
impulse (or, a broadband pulse) to the input of a filter that has as frequency response
H(ω)= Ê(ω), so that the impulse response of the filter is the signal E(t) that we wish
to generate.

Signal design in radar is a subject in itself and the present discussion was only meant
to be an introduction motivated by the similarity to dispersion compensation.

3.11 Further Reading

The topics discussed in this chapter are vast and diverse. The few references given
below are inevitably incomplete.

References [130–153] discuss the relationship between group velocity and energy ve-
locity for lossless or lossy media, as well as the issue of electromagnetic field momentum
and radiation pressure.

Some references on pulse propagation, spreading, chirping, and dispersion compen-
sation in optical fibers, plasmas, and other media are [154–206], while precursors are
discussed in Sommerfeld [1111], Brillouin [154], and [207–219].

Some theoretical and experimental references on fast and negative group velocity
are [220–275]. Circuit realizations of negative group delays are discussed in [276–280].
References [281–312] discuss slow light and electromagnetically induced transparency
and related experiments.

Some references on chirp radar and pulse compression are [313–352]. These include
phase-coding methods, as well as alternative phase modulation methods for Doppler-
resistant applications.

3.12 Problems

3.1 Using the definitions (3.2.5), show that the group and phase velocities are related by:

vg = vp + β dvpdβ

3.2 It was mentioned earlier that when vg > c, the peak of a pulse shifts forward in time as
it propagates. With reference to Fig. 3.2.2, let tpeak be the time of the peak of the initial
pulse E(0, t). First, show that the peak of the propagated pulse E(z, t) occurs at time
tprop = tpeak+z/vg. Then, show that the peak value E(z, tprop) does not depend on the initial
peak E(0, tpeak) but rather it depends causally on the values E(0, t), for t0 ≤ t ≤ tpeak −Δt,
where Δt = z/c − z/vg, which is positive if vg > c. What happens if 0 < vg < c and if
vg < 0?

3.3 Consider case 6 of the exactly solvable examples of Sec. 3.3 describing a lossy transmission
line with distributed parameters L′, C′, R′, G′. The voltage and current along the line satisfy
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the so-called telegrapher’s equations:

∂V
∂z

+ L′ ∂I
∂t
+R′I = 0 ,

∂I
∂z

+C′ ∂V
∂t

+G′V = 0 (3.12.1)

The voltage impulse response V(z, t) of the line is given by Eq. (3.3.1), where tf = z/c,
a+ b = R′/L′, a− b = G′/C′, and c = 1/

√
L′C′:

V(z, t)= δ(t − tf )e−atf + e−at
I1
(
b
√
t2 − t2f

)
√
t2 − t2f

btf u(t − tf )

Show that the corresponding current I(z, t) is given by

√
L′

C′
I(z, t)= δ(t − tf )e−atf + e−at

⎡
⎣ I1

(
b
√
t2 − t2f

)
√
t2 − t2f

bt − bI0
(
b
√
t2 − t2f

)⎤⎦u(t − tf )

by verifying that V and I satisfy Eqs. (3.12.1). Hint: Use the relationships: I′0(x)= I1(x) and
I′1(x)= I0(x)−I1(x)/x between the Bessel functions I0(x) and I1(x).
Next, show that the Fourier transforms of V(z, t) and I(z, t) are:

V̂(z,ω)= e−γz , Î(z,ω)= e−γz

Z

where γ,Z are the propagation constant and characteristic impedance (see Sec. 10.6):

γ = jk =
√
R′ + jωL′

√
G′ + jωC′ , Z =

√
R′ + jωL′
G′ + jωC′

3.4 Computer Experiment—Transient Behavior. Reproduce the results and graphs of the Figures
3.4.1, 3.4.2, and 3.4.3.

3.5 Consider the propagated envelope of a pulse under the linear approximation of Eq. (3.5.13),
that is, F(z, t)= F(0, t−k′0z), for the case of a complex-valued wavenumber, k′0 = β′0− jα′0.
For a gaussian envelope:

F(z, t)= F(0, t − k′0z)= exp

[
−
(
t − (β′0 − jα′0)z

)2

2τ2
0

]

Determine an expression for its magnitude |F(z, t)|. Then show that the maximum of
|F(z, t)| with respect to t at a given fixed z is moving with the group velocity vg = 1/β′0.

Alternatively, at fixed t show that the maximum with respect to z of the snapshot |F(z, t)|
is moving with velocity [160]:

v = β′0
β′20 −α′20

3.6 Consider the propagating wave E(z, t)= F(z, t)ejω0t−jk0z. Assuming the quadratic approx-
imation (3.5.9), show that the envelope F(z, t) satisfies the partial differential equation:

(
∂
∂z

+ k′0
∂
∂t
− j k

′′
0

2

∂2

∂t2

)
F(z, t)= 0

Show that the envelope impulse response g(z, t) of Eq. (3.5.16) also satisfies this equation.
And that so does the gaussian pulse of Eq. (3.6.4).
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3.7 Let F(z, t) be the narrowband envelope of a propagating pulse as in Eq. (3.5.5). Let z(t)
be a point on the snapshot F(z, t) that corresponds to a particular constant value of the
envelope, that is, F(z(t), t)= constant. Show that the point z(t) is moving with velocity:

ż(t)= − ∂tF
∂zF

Under the linear approximation of Eq. (3.5.13), show that the above expression leads to the
group velocity ż(t)= 1/k′0.

Alteratively, use the condition |F(z, t)|2 = constant, and show that in this case

ż(t)= − Re(∂tF/F)
Re(∂zF/F)

Under the linear approximation and assuming that the initial envelope F(0, t) is real-valued,
show that ż = 1/Re(k′0).

3.8 Given the narrowband envelope F(z, t) of a propagating pulse as in Eq. (3.5.5), show that it
satisfies the identity:

e−j(k−k0)z F̂(0,ω−ω0)=
∫∞
−∞
F(z, t)e−j(ω−ω0)t dt

Define the “centroid” time t(z) by the equation

t(z)=
∫∞
−∞ t F(z, t)dt∫∞
−∞ F(z, t)dt

Using the above identity, show that t(z) satisfies the equation:

t(z)= t(0)+k′0z (3.12.2)

Therefore, t(z) may be thought of as a sort of group delay. Note that no approximations
are needed to obtain Eq. (3.12.2).

3.9 Consider the narrowband envelope F(z, t) of a propagating pulse E(z, t)= F(z, t)ejω0t−jk0z

and assume that the medium is lossless so that k(ω) is real-valued. Show the identity∫∞
−∞
|E(z, t)|2e−jωt dt = 1

2π

∫ ∞
−∞
ejk(ω

′)z Ê∗(0,ω′) e−jk(ω
′+ω)z Ê(0,ω′ +ω)dω′

Define the average time delay and average inverse group velocity through:

t̄(z)=
∫∞
−∞ t |F(z, t)|2 dt∫∞
−∞ |F(z, t)|2 dt

, k̄′0 =
∫∞
−∞ k′(ω0 +ω)|F̂(0,ω)|2 dω∫∞

−∞ |F̂(0,ω)|2 dω

where F̂(0,ω) is defined in Eq. (3.5.2). Using the above identity, show the relationship:

t̄(z)= t̄(0)+k̄′0z

3.10 Computer Experiment—Propagation with Negative Group Velocity. Consider the pulse prop-
agation experiment described in Figs. 3.9.3 and 3.9.4, which is a variation of the experiment
in Ref. [234]. The wavenumbers in vacuum, in the absorption and gain media will be de-
noted by kv, ka, kg. They can be calculated from Eqs. (3.9.1)–(3.9.6) with f = 0,+1,−1,
respectively.

Let E(t) and Ê(ω) be the initially launched waveform and its Fourier transform on the
vacuum side of the interface with the absorbing medium at z = 0. Because the refractive
indices n(ω) are very nearly unity, we will ignore all the reflected waves and assume that
the wave enters the successive media with unity transmission coefficient.
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a. Show that the wave will be given as follows in the successive media shown in Fig. 3.9.3:

E(z, t)= 1

2π

∫ ∞
−∞
Ê(ω)dω

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ejωt−jkvz if z ≤ 0

ejωt−jkaz if 0 < z ≤ a
ejωt−jkaa−jkv(z−a) if a < z ≤ 3a

ejωt−j(ka+2kv)a−jkg(z−3a) if 3a < z ≤ 4a

ejωt−j(ka+2kv+kg)a−jkv(z−4a) if 4a < z

(3.12.3)

Thus, in each region, the pulse will have the following form, with appropriate defini-
tions of the wavenumbers q(ω), k(ω), and offset d:

E(z, t)= 1

2π

∫ ∞
−∞
Ê(ω)ejωt−jqa−jk(z−d)dω (3.12.4)

b. Consider, next, a gaussian pulse with width τ0, modulating a carrier ω0, defined at
z = 0 as follows:

E(t)= e−t2/2τ2
0 ejω0t � Ê(ω)=

√
2πτ2

0 e−τ
2
0(ω−ω0)2/2 (3.12.5)

Assuming a sufficiently narrow bandwidth (small 1/τ0 or large τ0,) the wavenumbers
q(ω) and k(ω) in Eq. (3.12.4) can be expanded up to second order about the carrier
frequency ω0 giving:

q(ω) = q0 + q′0(ω−ω0)+q′′0 (ω−ω0)2/2

k(ω) = k0 + k′0(ω−ω0)+k′′0 (ω−ω0)2/2
(3.12.6)

where the quantitiesq0 = q(ω0), q′0 = q′(ω0), etc., can be calculated from Eqs. (3.9.1)–
(3.9.6). Inserting these expansions into Eq. (3.12.4), show that the pulse waveform is
given by:

E(z, t) = ejω0t−jq0a−jk0(z−d)
√√√√ τ2

0

τ2
0 + jq′′0 a+ jk′′0 (z− d)

· exp

[
−

(
t − q′0a− k′0(z− d)

)2

2
(
τ2

0 + jq′′0 a+ jk′′0 (z− d)
)
] (3.12.7)

c. Assume the following values of the various parameters:

c = 1, ωp = 1, γ = 0.01, ωr = 5, τ0 = 40, a = 50, ω0 = 5.35

The carrier frequency ω0 is chosen to lie in the right wing of the resonance and lies
in the negative-group-velocity range for the gain medium (this range is approximately
[5.005, 5.5005] in the above frequency units.)

Calculate the values of the parameters q0, q′0, q′′0 , k0, k′0, k′′0 within the various ranges
of z as defined by Eq. (3.12.3), and present these values in a table form.

Thus, E(z, t) can be evaluated for each value of t and for all the z’s in the four ranges.
Eq. (3.12.7) can easily be vectorized for each scalar t and a vector of z’s.

Make a MATLAB movie of the pulse envelope
∣∣E(z, t)∣∣, that is, for each successive t,

plot the envelope versus z. Take z to vary over −2a ≤ z ≤ 6a and t over −100 ≤ t ≤
300. Such a movie can be made with the following code fragment:
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z = -2*a : 6*a; % vector of z’s

t = -100 : 300; % vector of t’s

for i=1:length(t),

% here insert code that calculates the vector E = E(z, t(i))

plot(z/a, abs(E)); % plot as function of z

xlim([-2,6]); xtick([0,1,3,4]); grid % keep axes the same

ylim([0,1]); ytick(0:1:1); % xtick, ytick are part of ewa

text(-1.8, 0.35, strcat(’t=’,num2str(t(i))), ’fontsize’, 15);

F(:,i) = getframe; % save current frame

end

movie(F); % replay movie - check syntax of movie() for playing options

Discuss your observations, and explain what happens within the absorption and gain
media. An example of such a movie may be seen by running the file grvmovie1.m in
the movies subdirectory of the ewa toolbox.

d. Reproduce the graphs of Fig. 3.9.4 by evaluating the snapshots at the time instants:

t = [−50, 0, 40, 120, 180, 220, 230, 240, 250, 260]

e. For both the absorbing and the gain media, plot the real and imaginary parts of the
refractive index n = nr − jni and the real part of the group index ng versus frequency
in the interval 4 ≤ ω ≤ 6. Indicate on the graph the operating frequency points. For
the gain case, indicate the ranges over which Re(ng) is negative.

f. Repeat Parts c–d for the carrier frequency ω0 = 5.8 which lies in the superluminal
range 0 < Re(ng)< 1.

3.11 Consider Eqs. (3.9.1)–(3.9.6) for the single-resonance Lorentz model that was used in the
previous experiment. Following [234], define the detuning parameters:

ξ = ω−ωr

ωp
, ξ0 = ω0 −ωr

ωp
(3.12.8)

and make the following assumptions regarding the range of these quantities:

γωp ωr and
ωp

ωr
 |ξ|  ωr

ωp
(3.12.9)

Thus, γ/ωp  1, ωp/ωr  1, and ξ, ξ0 can be taken to be order of 1. In the above
experiment, they were ξ0 = 0.35 and ξ0 = 0.8.

Show that the wavenumber k(ω), and its first and second derivatives k′(ω), k′′(ω), can be
expressed approximately to first order in the quantities γ/ωp and ωp/ωr as follows [234]:

k(ω) = ω
c

[
1− f

4ξ
ωp

ωr
− j f

8ξ2

(ωp

ωr

)(
γ
ωp

)]

k′(ω) = 1

c

[
1+ f

4ξ2
+ j f

4ξ3

(
γ
ωp

)]

k′′(ω) = − 1

cωp

[
f

2ξ3
+ j 3f

4ξ4

(
γ
ωp

)]
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The group velocity vg is obtained from the real part of k′(ω):

1

vg
= Re[k′(ω)]= 1

c

[
1+ f

4ξ2

]
⇒ vg = c

1+ f
4ξ2

Thus, vg = c in vacuum (f = 0) and vg < c in the absorbing medium (f = 1). For the gain
medium (f = −1), we have vg < 0 if |ξ| < 1/2, and vg > c if |ξ| > 1/2.

Verify that this approximation is adequate for the numerical values given in the previous
problem.

3.12 Consider a chirped pulse whose spectrum has an ideal rectangular shape and an ideal
quadratic phase, where Ω = 2πB and ω̇0 = 2πB/T:

Ê(ω)=
√

2πj
ω̇0

rect
(
ω−ω0

Ω

)
e−j(ω−ω0)2/2ω̇0

This is the ideal spectrum that all waveforms in chirp radar strive to have. Show that the
corresponding time signal E(t) is given in terms of the Fresnel function F(x) by

E(t)= F(t) ejω0t+jω̇0t2/2 , F(t)= F(τ+)−F(τ−)
1− j , τ± =

√
2BT

(
±1

2
− t
T

)

Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√
jBT

sin(πBt)
πBt

ejω0t

3.13 Computer Experiment—Pulse Compression. Take T = 30, B = 4, f0 = 0. Plot the real parts of
the signals E(t) and Ecompr(t) of the previous problem versus t over the interval−T ≤ t ≤ T.
Some example graphs are shown in Fig. 3.12.1.

3.14 Consider the following chirped pulse, where ω̇0 = 2πB/T:

E(t)= sin(πt/T)
πt/T

ejω0t+jω̇0t2/2

Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√
jBT ejω0t−jω̇0t2/2 rect(Bt)

Moreover, show that the spectrum of E(t) is given in terms of the Fresnel function F(x) as
follows:

Ê(ω)= F(w+)−F(w−)
1− j , w± =

√
2

BT

(
±1

2
− (f − f0)T

)

3.15 Computer Experiment—Pulse Compression. Take T = 30, B = 4, f0 = 0.

a. Plot the real parts of the signals E(t) and Ecompr(t) of the previous problem over the
interval −T ≤ t ≤ T. Some example graphs are shown in Fig. 3.12.2.

b. Plot the magnitude spectrum |Ê(ω)| in dB versus frequency over the interval −B/2 ≤
f ≤ B/2 (normalize the spectrum to its maximum at f = f0.) Verify that the spectrum
lies essentially within the desired bandwidth B and determine its 4-dB width.
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c. Write Ê(ω) in the form:

Ê(ω)= e−j(ω−ω0)2/2ω̇0 D(ω) , D(ω)= F(w+)−F(w−)
1− j ej(ω−ω0)2/2ω̇0

Plot the residual phase spectrum Arg
[
D(ω)

]
over the above frequency interval. Verify

that it remains essentially flat, confirming that the phase of Ê(ω) has the expected
quadratic dependence on ω. Show that the small residual constant phase is numeri-
cally is equal to the phase of the complex number (1+ j)F(1/√2BT).
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Fig. 3.12.1 Example graphs for Problem 3.13.
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Fig. 3.12.2 Example graphs for Problem 3.15.

3.16 Consider the chirped gaussian pulse of effective duration T, where ω̇0 = Ω/T:

E(t)= e−t2/2T2
ejω0t+jω̇0t2/2 , −∞ < t <∞

Show that the output of the compression filter (3.10.10) is given by

Ecompr(t)=
√
jΩT ejω0t−jω̇0t2/2 e−Ω

2t2/2

which has an effective duration of 1/Ω. Show that the spectrum of E(t) is given by:

Ê(ω)=
√

2πj
ω̇0

e−j(ω−ω0)2/2/ω̇0

√
ΩT

ΩT + j exp

[
− (ω−ω0)2

2ω̇0(ΩT + j)

]
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Show that in the limit of large time-bandwidth product,ΩT� 1, the last exponential factor
becomes

exp

[
−(ω−ω0)2

2Ω2

]

which shows that the effective width of the chirped spectrum is Ω.

3.17 Stationary-Phase Approximation. Consider a radar waveform E(t)= F(t)ejθ(t), with enve-
lope F(t) and phase θ(t).

a. Using the stationary-phase approximation of Eq. (F.22) of Appendix F, show that the
spectrum of E(t) can be expressed approximately as:

Ê(ω)=
∫∞
−∞
F(t)ejθ(t)e−jωt dt �

√
2πj
θ̈(tω)

E(tω)e−jωtω =
√

2πj
θ̈(tω)

F(tω)ejθ(tω)e−jωtω

where tω is the solution of the equation θ̇(t)=ω, obtained by applying the stationary-
phase approximation to the phase function φ(t)= θ(t)−ωt.

b. For the case of a linearly chirped signal E(t)= F(t)ejω0t+jω̇0t2/2, show that the above
approximation reads:

Ê(ω)�
√

2πj
ω̇0

F
(
ω−ω0

ω̇0

)
e−j(ω−ω0)2/2ω̇0

Thus, it has the usual quadratic phase dispersion. Show that if F(t) has finite duration
over the time interval |t| ≤ T/2, then, the above approximate spectrum is sharply
confined within the band |ω−ω0| ≤ Ω/2, with bandwidth Ω = ω̇0T.

c. Consider the inverse Fourier transform of the above expression:

1

2π

∫ ∞
−∞

√
2πj
ω̇0

F
(
ω−ω0

ω̇0

)
e−j(ω−ω0)2/2ω̇0ejωtdω

Define the phase function φ(ω)=ωt− (ω−ω0)2/2ω̇0. By applying the stationary-
phase approximation to the above integral with respect to the phase function φ(ω),
show that the above inverse Fourier transform is precisely equal to the original chirped
signal, that is, E(t)= F(t)ejω0t+jω̇0t2/2.

d. Apply the compression filter (3.10.10) to the approximate spectrum of Part b, and show
that the corresponding compressed signal is in the time domain:

Ecompr(t)=
√
jω̇0

2π
ejω0t F̂(−ω̇0t)

where F̂(ω) is the Fourier transform of F(t). This is similar, but not quite identical,
to the exact expression (3.10.14).

e. Show that Part c is a general result. Consider the stationary-phase approximation
spectrum of Part a. Its inverse Fourier transform is:

1

2π

∫ ∞
−∞

√
2πj
θ̈(tω)

F(tω)ejθ(tω)e−jωtωejωtdω

Define the phase function φ(ω)= θ(tω)−ωtω+ωt. Show that the stationary-phase
approximation applied to this integral with respect to the phase functionφ(ω) recov-
ers the original waveform E(t)= F(t)ejθ(t).
[Hint: the condition θ̇(tω)=ω implies θ̈(tω)(dtω/dω)= 1.]
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3.18 An envelope signal F(t) is processed through two successive pulse compression filters with
chirping parameters ω̇1 and ω̇2, as shown below.

where Gi(ω)= ejω2/2ω̇i , i = 1,2. Show that if the chirping parameter of the intermediate
quadratic modulation is chosen to be ω̇0 = ω̇1+ω̇2, then the overall output is a time-scaled
version of the input:

Fout(t)= j
√
ω̇2

ω̇1
ejω̇0ω̇2t2/2ω̇1 F

(
−ω̇2t
ω̇1

)


